期刊文献+

A new technique to measure the differential XAFS spectrum

A new technique to measure the differential XAFS spectrum
原文传递
导出
摘要 A new technique has been developed for direct measurement of the differential X-ray absorption fine structure(XAFS) spectrum by the energy-modulation method. To acquire the energy-oscillating incident X-ray beam, a piezoelectric actuator is used to control the double-crystal monochromator. A logarithmic converter circuit and a lock-in amplifier are used to extract the modulated signals. The normal and differential XAFS spectra of the Mn K-edge of Li2 Mn O3 have been collected. The X-ray-absorption near-edge-structure(XANES) spectra verify that the signal-to-noise ratio has been greatly improved by the new technique, and the extended X-ray absorption fine structure(EXAFS) spectra demonstrate that this new technique can efficiently enhance the signals of the backscattering atoms. A new technique has been developed for direct measurement of the differential X-ray absorption fine structure(XAFS) spectrum by the energy-modulation method. To acquire the energy-oscillating incident X-ray beam, a piezoelectric actuator is used to control the double-crystal monochromator. A logarithmic converter circuit and a lock-in amplifier are used to extract the modulated signals. The normal and differential XAFS spectra of the Mn K-edge of Li2 Mn O3 have been collected. The X-ray-absorption near-edge-structure(XANES) spectra verify that the signal-to-noise ratio has been greatly improved by the new technique, and the extended X-ray absorption fine structure(EXAFS) spectra demonstrate that this new technique can efficiently enhance the signals of the backscattering atoms.
出处 《Chinese Physics C》 SCIE CAS CSCD 2016年第4期131-135,共5页 中国物理C(英文版)
基金 Supported by NSFC(11175202)
关键词 modulated verify piezoelectric amplifier actuator converter acquire conveniently fluctuation incident modulated verify piezoelectric amplifier actuator converter acquire conveniently fluctuation incident
  • 相关文献

参考文献15

  • 1P. A. Lee, P. H. Citrin, P. Eisenberger et al, Rev. Mod. Phys., 53:769 (1981).
  • 2J. J. Rehr and R. C. Albers, Rev. Mod. Phys., 72:621 (2000).
  • 3W. E. Engeler, H. Fritzsch, M. Garfinke et al, Phys. Rev. Lett., 14:1069 (1965).
  • 4J. L. Shay, Phys. Rev. B, 2:803 (1970).
  • 5D. E. Aspnnes and A. A. Studna, Phys. Rev. B, T: 4605 (1973).
  • 6K. Okamoto, K. Kohdate, K. Nagai et al, J. Synchrot. Radiat., 10:242 (2003).
  • 7R. F. Pettifer, O. Mathon, S. Pascarelli et al, Nature, 435:7"8 (2005).
  • 8M. P. Ruffoni, R. F. Pettifer, S. Pascarelli et al, J. Synchrot.Radiat., 14:421 (2007).
  • 9S. Q. Chu, L. R. Zheng, Y. L. Zhou et al, J. Synchrot. Radiat., iS: 728 (2011).
  • 10S. Q. Chu, L. R. Zheng, R. Z. Che et al, Chin. Phys. C, 36: 184 ~2012~.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部