期刊文献+

磁路对30cm离子推力器性能影响研究 被引量:2

Study on Effects of Magnetic Circuit on Performance of 30cm Diameter Ion Thruster
下载PDF
导出
摘要 为了研究磁路结构对与新型GEO平台配套的30cm离子推力器(LIPS-300)性能的影响,采用PIC-MCC数值模拟方法对LIPS-300在其典型工作点下的放电损耗和束流平直度进行了研究,其中输入磁场采用有限元软件Maxwell计算得到,另外还利用Maxwell研究了磁体尺寸对侧壁磁环对产生的磁场等值线的影响。结果表明在LIPS-300的典型工作点下,4极场推力器比3极场推力器放电损耗高3%,分别是164W/A和160W/A,束流平直度高30%,分别为0.65和0.50。利用较厚较窄的磁环能够获得更大的无场区体积。因此,采用4极场将获得更好的推力器性能,采用较大厚度/宽度比的磁体有利于推力器束流平直度的改进。 In order to study the effects of magnetic circuit on the performance of 30 cm diameter ion thruster(LIPS-300) which matches the new type of GEO satellite platform,PIC-MCC numerical simulation method was used to study LIPS-300's discharge loss and beam flatness under its typical operating point. The magnetic field input of PIC-MCC simulation was calculated using infinite element software Maxwell. It was also used to study the effects of different magnet sizes on the magnetic contour produced by side-wall magnet pair. The obtained results indicate that under LIPS-300's typical operating point,4 pole field thruster's discharge loss is higher than that of 3 pole field by 3%. They are 164W/A and 160W/A,respectively. The 4 pole field thruster's beam flatness is larger than that of 3 pole field thruster by 30%. They are 0.65 and 0.50,respectively. More field free volume can be obtained by utilization of thicker and narrower magnet. So,the thruster can achieve better performance by applying 4 pole magnetic field and moderately large thickness/width ratio of the magnet is beneficial to the improvement of the beam flatness.
出处 《推进技术》 EI CAS CSCD 北大核心 2016年第1期193-200,共8页 Journal of Propulsion Technology
基金 真空低温技术与物理重点实验室基金(9140c550206130c5503)
关键词 离子推力器 磁路 PIC-MCC 放电损耗 束流平直度 Ion thruster Magnetic circuit PIC-MCC Discharge loss Beam flatness
  • 相关文献

参考文献3

二级参考文献46

  • 1钟凌伟,刘宇,王海兴,汤海滨,任军学.电荷交换离子对栅极系统束流影响的数值研究[J].航空动力学报,2009,24(8):1911-1916. 被引量:6
  • 2郑茂繁,江豪成,顾左,高军,郭宁,梁凯.20cm氙离子推力器3000h寿命实验[J].航天器环境工程,2009,26(4):374-377. 被引量:16
  • 3Jonathan L, Noord V. Lifetime assessment of the NEXT ion thruster[ R]. AIAA 2007-5274.
  • 4Brophy J R, Polk J E, Randolph T M. Lifetime qualifica- tion of electric thrusters for deep space missions [ R ]. AIAA 2008-5184.
  • 5Peng X H, Ruyten W M. Keefer D. Three dimensional particle simulation of grid erosion in ion Thruster [ R]. AIAA 1991-199.
  • 6Brophy J R, Polk J E , Pless L C. Test-to-failure of a two-grid, 30-era-alia. ion accelerator system [ R ]. IEPC 1993-172.
  • 7Polk J E, Moore N R, Newlin L E, et al. Probabilistic a- nalysis of ion engine accelerator grid life[ R]. A1AA 1993- 176.
  • 8Brophy J R, Polk J E. Ion engine service life validation by analysis and testing[ R]. AIAA 1996-2715.
  • 9Anedrson J R, Polk J E, Brophy J R. Service life assess- ment for ion engines[ R]. IEPC 1997-049.
  • 10Brophy J R, Katz I, Polk J E, et al. Numerical simula- tions of ion thruster accelerator grid erosion [ R ]. AIAA 2002-4261.

共引文献29

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部