期刊文献+

邻域粗糙集在属性约简及权重计算中的应用 被引量:12

Application of attributes reduction and weights calculation through neighborhood rough set
下载PDF
导出
摘要 为了减少航天器特征值属性的冗余性并提高其权重的准确性,提出了一种基于邻域粗糙集的属性约简及权重计算方法。通过对不同重要度下限分类精度的对比分析,给出了确定邻域半径的新规则。在信息观权值最优计算公式的基础上,提出了一种基于信息熵的特征值权重计算方法;给出了代数观和信息观最优组合权值确定方法,解决了代数观和信息观方法的权衡问题。将其应用于某卫星姿控系统特征值分析中,与其他方法的比较表明该方法能有效减少特征值的数目,提高特征值权重的准确性。 In order to reduce the redundancy of spacecraft attribute value and improve the accuracy of weights calculation, a new method based on rough sets is put forward. By comparing classification accuracy in different lower bounds of importance degree, the new rules for determining the neighborhood radius are given. Based on optimal formula to calculate weights in the view of information, a method to calculate weights of attributes based on information entropy is proposed, and a method for determining weights based on optimal combination of the algebra view and information view is put forward. The balance problem between algebra view and information view is solved. The method is applied to analyze characteristic values for a satellite attitude control system. A comparison with other methods shows that the method can effectively reduce the number of characteristic values and improve the accuracy of feature weights.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第7期160-165,共6页 Computer Engineering and Applications
基金 微小型航天器技术国防重点学科实验室开放基金 中央高校基本科研业务费专项资金(No.HIT.NSRIF.2014033)
关键词 邻域粗糙集 属性约减 权重计算 姿控系统 neighborhood rough set attributes reduction weights calculation attitude control system
  • 相关文献

参考文献14

  • 1Pawlak Z.Rough sets:Theoretical aspects of reasoning about data[M].Dordrecht:Kluwer Academic Publisher,1991.
  • 2Silva G C,Palhares R M,Caminhas W M.Immune inspired fault detection and diagnosis:A fuzzy-based approach of the negative selection algorithm and participatory clustering[J].Expert Systems with Applications,2012,39(4):12474-12486.
  • 3Perzyk M,Kochanski A,Kozlowski J,et al.Comparison of data mining tools for significance analysis of process parameters in applications to process fault diagnosis[J].Information Sciences,2014,259(10):380-392.
  • 4曹源,梁华国,黄正峰,陈秀美,吴珍妮.基于Markov链的FSM容软错误设计[J].宇航学报,2011,32(3):665-670. 被引量:3
  • 5关欣,何友,衣晓.一种新的基于粗集的辐射源信号识别模型[J].宇航学报,2007,28(3):685-688. 被引量:15
  • 6Biswas S,Dey D,Chatterjee B,et al.An approach based on rough set theory for identification of single and multiple partial discharge source[J].Electrical Power and Energy Systems,2013,46(11):163-174.
  • 7Yu Y,Pedrycz W,Miao D.Neighborhood rough sets based multi-label classification for automatic image annotation[J].International Journal of Approximate Reasoning,2013,54(6):1373-1387.
  • 8胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649. 被引量:290
  • 9Lingras P J,Yao Y Y.Data mining using extensions of the rough set model[J].Journal of the American Society for Information Science,1998,49(5):415-422.
  • 10Liang J Y,Chin K S,Dang C Y,et al.A new method for measuring uncertainty and fuzziness in rough set theory[J].International Journal of General Systems,2002,31(4):331-342.

二级参考文献61

共引文献379

同被引文献104

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部