期刊文献+

基于Hadoop及出租车历史轨迹的乘客推荐算法 被引量:3

Recommendation algorithm for passengers based on Hadoop and trajectory data
下载PDF
导出
摘要 针对智慧城市中乘客打车策略的推荐算法效率不高的问题,使用古典概率学统计历史轨迹中该时间该路段有空车的天数占数据集总天数比例,作为乘客等到空车概率;使用最小二乘法拟合时间与到达空车数曲线,预测乘客等到空车时间,以提高推荐效率。同时,使用Hadoop作为数据存储和计算平台以提高数据处理能力;提出一种基于地图栅格化的路网存储结构来提高搜索地图速度;改进一种基于计算几何的地图匹配算法提高匹配准确率。实验结果显示,空车概率推荐算法正确率约87%,等待时间推荐算法正确率达88.4%,表明挖掘轨迹数据为乘客提供推荐服务的可行性。 In order to improve the efficiency of passenger recommendation algorithm for wisdom city, this paper uses classical probability to count the percentage of the empty taxi passing days in the total days to recommend the probability of passengers waiting for empty taxi, and uses least squares to fit arrival rate curve, namely, the relation curve between time and the number of empty taxis to predict the time passengers have to wait to take an empty taxi from the time that they reach the right road. To improve the efficiency of recommendation, the paper has done three more work:Select Hadoop as data storage and computing platform to improve the ability of data processing; put forward a new road network storage structure based on rasterizing maps to improve the search speed of the map; reform a map matching algorithm which based on computational geometry to improve the matching accuracy. Field testing experiments show that, the correct probability of empty taxi recommendation algorithm accuracy can reach 87% while the accuracy of waiting time recommendation algorithm is about 88.4 %, which shows the feasibility of mining trajectory data to provide recommendation service for passengers.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第7期264-270,共7页 Computer Engineering and Applications
基金 黑龙省自然科学基金重点项目(No.ZD201403) 哈尔滨市科技创新人才基金(No.2014RFQXJ132)
关键词 HADOOP 轨迹数据 推荐算法 乘客推荐服务 Hadoop trajectory data recommendation algorithm recommendation service for passengers
  • 相关文献

参考文献13

  • 1潘纲,李石坚,齐观德,等.移动轨迹数据分析与智慧城市[J].中国计算机学会通讯,2012,8(5):31-37.
  • 2Liu S,Liu Y,Ni L M,et al.Towards mobility-based clustering[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2010:919-928.
  • 3蒋益娟,李响,李小杰,孙靖.利用车辆轨迹数据提取道路网络的几何特征与精度分析[J].地球信息科学学报,2012,14(2):165-170. 被引量:35
  • 4Zheng Y,Liu Y,Yuan J,et al.Urban computing with taxicabs[C]//Proceedings of the 13th international Conference on Ubiquitous Computing,2011:89-98.
  • 5Ramos J.Using tf-idf to determine word relevance in document queries[C]//Proceedings of the 1st Instructional Conference on Machine Learning,2003.
  • 6Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
  • 7Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.[S.l.]:Morgan Kaufmann Publishers Inc,1998:43-52.
  • 8潘遥,李石坚,潘纲.基于出租车轨迹数据挖掘的乘客候车时间预测[J].软件学报,2013,24(S2):14-23.
  • 9Yuan J,Zheng Y,Zhang L,et al.Where to find my next passenger[C]//Proceedings of the 13th International Conference on Ubiquitous Computing,2011:109-118.
  • 10Shvachko K,Kuang H,Radia S,et al.The Hadoop distributed file system[C]//Proceedings of 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies(MSST),2010:1-10.

二级参考文献18

  • 1张昊,徐刚.基于四邻域的二值图像细化算法[J].信息技术与信息化,2004(6):24-27. 被引量:5
  • 2吴选忠.Zhang快速并行细化算法的扩展[J].福建工程学院学报,2006,4(1):89-92. 被引量:20
  • 3耿素云.集合论与图论[M].北京:北京大学出版社,1996..
  • 4B Andrasfai 郭照人.图论导引[M].高等教育出版社,1985..
  • 5Stefanelli R,Rosenfeld A. Some parallel thinning algorithms for digital pictures[J].Journal of the ACM,1971,(02):255-264.doi:10.1145/321637.321646.
  • 6Pavlidis T,Ali F. Computer recognition of handwritten numerals by ploygonal approximations[J].IEEE Transactions on Systems,Man and Cybernetics,1975,(06):610-614.doi:10.1109/TSMC.1975.4309402.
  • 7Zhang T Y,Suen C Y. A fast parallel algorithm for thinning digital patterns[J].Communications of the ACM,1984.236-239.
  • 8帕夫利迪斯;吴成柯.计算机图形显示和图像处理的算法[M]北京:科学出版社,19851-403.
  • 9李兰友.Visual C#图像处理程序设计实例[M]北京:国防工业出版社,20031-305.
  • 10胡林,谷正气,杨易,黄晶.基于权值D-S证据理论的车辆导航地图匹配[J].中国公路学报,2008,21(2):116-120. 被引量:15

共引文献41

同被引文献35

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部