期刊文献+

一种基于人眼视觉注意力的三维视频重定向方法 被引量:1

3D video retargeting based on human visual attention
原文传递
导出
摘要 从人眼视觉注意力的角度出发,提出了一种三维视频重定位方法。首先,引入场景的深度信息,并结合梯度、显著性和运动对象检测构造模型,得到视觉注意力能量项;然后,分别构造帧内能量项和帧间能量项,并结合视觉注意力能量项,构造总能量函数进行细缝裁剪,实现视频的重定向。实验结果表明,本文方法能够较好地保护视频场景中的重要对象,并避免较大的失真和抖动。 When the resolution of the image/video is not consistent with that of the display devices,the problem of adaptively matching screen resolution is known as retargeting.Recently,content-aware retargeting approaches have attracted more attention from the perspective of user′s quality of experience.In this paper,a 3Dvideo retargeting method based on human visual attention is proposed.First,we model the visual attention energy by combining gradient,saliency and motion object information.Then,we construct intra and inter frame energy terms respectively,and obtain the total energy for seam carving by combining intra frame energy,inter frame energy and visual attention energy.Experimental results show that the proposed video retargeting method can protect the important objects in video very well without serious distortion or jitter.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第3期303-309,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61271021)资助项目
关键词 三维视频 视觉注意力 细缝裁剪 视频重定向 3D video visual attention seam carving video retargeting
  • 相关文献

参考文献3

二级参考文献47

  • 1Ismael Daribo, Hideo Saito. A novel inpainting-based lay- ered depth video for 3DTV[J]. IEEE Transactions on Broadcasting, 2011, (99) : 1.
  • 2Stoykova E,Alatan A A,Benzie P,et al. 3-D time-varying scene capture technologies-A survey[J]. IEEE Transac- tions on Circuits and Systems for Video Technology, 2007,17:1568-1586.
  • 3Smolic A, Mueller K, Merkle P, et al. Multi-view video plus depth(MVD)format for advanced 3D video systems [A]. 23rd Meeting: ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q. 6, JVT-Wl00, USA.. San Jose, 2007.
  • 4Collins R T. A space-sweep approach to true multi-image matching[A]. Proc. IEEE CS Conf. Computer Vision and Pattern Recognition[C]. 1996,358-363.
  • 5Okutomi M, Kanade T. A multiple-baseline stereo[J]. IEEE Trans. Pattern Analysis and Machine Intelligence [C]. 1993,15(4):353-363.
  • 6Kang S B, Szeliski R. Extracting view-dependent depth maps from a collection of images[J]. Int'l J. Computer Vi- sion ,2004,58(2) : 139-163.
  • 7Sun J,Zheng N N,Shum H Y. Stereo matching using belief propagation[J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2003,25(7) : 787-800.
  • 8Fehn C. Depth-image-based rendering (DIBR), compres- sion and transmission for a new approach on 3D-TV[A]. Proc. of SPIE[C]. 2004,93-104.
  • 9Kang Y S,Ho Y S. Disparity map generation for color im- age using TOF depth camera[A]. 3DTV Conference:The True Vision-Capture,Transmission and Display of 3D Vid- eo (3DTV-CON) [C]. 2011, 1-4.
  • 10Zhang L, Tamm W J. Stereoscopic image generation based on depth images for 3D TV[J]. in IEEE Trans. on Broadcasting, 2005,51 (2) :191-199.

共引文献39

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部