期刊文献+

A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells

高分散Fe-N-C氧还原反应电催化剂及其在直接甲醇燃料电池中的应用(英文)
下载PDF
导出
摘要 Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance. 氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重.Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C,N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔的碳材料对铁前体的吸附及锚定作用,获得了一种Fe高度分散的Fe-N-C电催化剂.采用物理吸脱附技术、高分辨透射电镜(HRTEM)和扫描电镜对Fe-N-C及其制备过程中相关电催化剂的孔结构及表面形貌进行了表征.结果表明,在第一步热解过程中,EDTA-2Na的Na对碳材料起到了活化作用,形成富含微孔的N掺杂碳材料(N-C-1),其BET比表面积达到1227 m^2/g,孔径约1.1 nm.在第二步热解过程中,N-C-1有效地抑制了Fe的聚集,产物Fe-N-C中的Fe元素均匀地分布在碳材料中,其比表面积高达1501 m^2/g.电化学测试结果表明,在碱性介质(0.1 mol/L NaOH)中,Fe-N-C电催化剂对ORR具有良好的催化活性,ORR起始电位(E_o)为1.08 V(vs.RHE),半波电位(E_(1/2))0.88 V,电子转移数n接近4,H_2O_2产率<3%,与商品20%Pt/C(Johnson Matthey)接近.电化学加速老化测试结果表明,Fe-N-C的E_(1/2)未发生明显变化,而Pt的负移45 mV,表明Fe-N-C具有很好的稳定性;在酸性介质(0.1 mol/L HClO_4)中,Fe-N-C的E_o为0.85 V,E_(1/2)为0.75 V,其E_(1/2)比Pt/C负移约0.15 V,表明在酸性介质中Fe-N-C对ORR的催化活性还有待提高.采用TEM、X射线衍射、X射线光电子能谱以及穆斯堡尔谱等方法研究了电催化剂构效关系.结果表明,Fe-N-C较好的ORR活性主要来自于高分散的Fe-N_4结构,此外,N(吡啶N和石墨N)掺杂的C也对反应具有一定的催化活性.与Pt/C相比,Fe-N-C电催化剂具有很好的耐甲醇性能.本文对比了Fe-N-C和Pt/C作为阴极催化剂的直接醇类燃料电池(DMFC)性能,采用质子交换膜的DMFC最大功率密度分别为47(Fe-N-C)和79 mW/cm^2(Pt/C),而采用碱性电解质膜的则分别为33(Fe-N-C)和8 mW/cm^2(Pt/C).结合半电池结果表明,Fe-N-C电催化剂在碱性介质中具有比Pt更为优秀的催化活性和稳定性,有望用作DMFC阴极代Pt催化剂.
出处 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期539-548,共10页 催化学报(英文)
基金 supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA09030104) the National Basic Research Program of China(973 Program,2012CB215500) the National Natural Science Foundation of China(21576258 50823008)~~
关键词 Highly dispersed iron Microporous carbon Oxygen reduction reaction Direct methanol fuel cell 高分散铁 微孔碳材料 氧还原反应 直接甲醇燃料电池
  • 相关文献

参考文献21

  • 1M. K. Debe, Nature, 2012, 486, 43-51.
  • 2R. J. Jasinski, Nature, 1964, 201, 1212-1213.
  • 3M. Lefèvre, E. Proietti, F. Jaouen, J. P. Dodelet, Science, 2009, 324, 71-74.
  • 4K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 2009, 323, 760-764.
  • 5D. Banham, S. Ye, K. Pei, J. I. Ozaki, T. Kishimoto, Y. Imashiro, J. Power Sources, 2015, 285, 334-348.
  • 6Z. Yang, H. G. Nie, X. A. Chen, X. H. Chen, S. M. Huang, J. Power Sources, 2013, 236, 238-249.
  • 7G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science, 2011, 332, 443-447.
  • 8C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, Electrochim. Acta, 2008, 53, 4937-4951.
  • 9J. Tian, A. Morozan, M. T. Sougrati, M. Lefèvre, R. Chenitz, J. P. Dodelet, D. Jones, F. Jaouen, Angew. Chem. Int. Ed., 2013, 125, 7005-7008.
  • 10C. Baldizzone, S. Mezzavilla, H. W. P. Carvalho, J. C. Meier, A. K. Schuppert, M. Heggen, C. Galeano, J. D. Grunwaldt, F. Schüth, K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 2014, 53, 1-6.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部