期刊文献+

图上的p-Laplacian方程解的性质及其数值仿真 被引量:4

Properties of the Solution for the p- Laplacian Equation on Graphs and Its Numerical Simulation
下载PDF
导出
摘要 本文通过研究图上的p-Laplacian算子的基本性质,首先讨论了图上的p-Laplacian方程解的性质;其次,给出了一个图上的p-Laplacian方程的解析解论证了理论上的结果;最后,对另一个图上的p-Laplacian方程进行数值模拟验证理论上的结果。 Throughout the researches on the basic properties of the p- Laplacian operator,the properties of the solution for the p-Laplacian equation on graphs were considered. Finally,the analytic solution of an example for the p- Laplacian equation on a special graph is used to demonstrate the theoretical results. Furthermore,the numerical simulation for the p- Laplacian equation on a complex graph is given.
作者 王坤 辛巧
出处 《长春师范大学学报》 2016年第2期9-13,共5页 Journal of Changchun Normal University
基金 新疆维吾尔自治区自然科学基金项目"图上的偏微分方程解的性质研究"(201442137-30) 伊犁师范学院2014年度研究生科研创新项目"图上的偏微分方程解的渐进行为"(2014YSY022)
关键词 图上的p-Laplacian算子 图上的p-Laplacian方程 CAUCHY问题 p-Laplacian operator on graphs p-Laplacian equation on graphs Cauchy problem
  • 相关文献

参考文献9

  • 1Chung S Y, Berenstein C A. co - Harmonic function and inverse conductivity problems on networks [ J ]. SIAM J Appl Math, 2005,56(4) : 1200 - 1226.
  • 2Chung S Y,Chung Y S,Kim J H. Diffusion and elastic equations on networks[J]. Publ Res Inst Math Sei,2007,43(3) : 699 - 725.
  • 3Elmoataz A, Lezoray O, Bougleux S. Nonloeal discrete regularization on weighted graphs:a framework for image and manifold processing [ J ]. IEEE Tans Image Process, 2008,17 ( 7 ) : 1047 - 1060.
  • 4Trinajstic N, Babie D, Nikoli S. The Laplacian matrix in chemistry [ J ]. J Chem Inf Comput Sei, 1994,34 ( 2 ) :368 - 376.
  • 5Zakrzewski W J. Laplacians on lattices [ J ]. J Nonlinear Math Phys, 2005,12 (4) :530 - 538.
  • 6Ta V T, Lezoray O, Elmoataz A, et al. Graph - based tools for microscopic cellular image segmentation [ J ]. Pattern Recognition, 2009,42(6) :1113 - 1125.
  • 7Lee Y S, Chung S Y. Extinction and positivity of solutions of the p - Laplaeian evolution equation on networks [ J ]. J Math Anal Appl,2012,386(2) :581 -592.
  • 8Gilboa G, Osher S. Nonlocal linear Image regularization and supervised segmentation[ J ]. Multiscale Model Simul, 2007,6 (2) : 595 - 630.
  • 9辛巧,许璐,王安平.无限图上带吸收项的热方程解的熄灭和正性[J].云南大学学报(自然科学版),2013,35(6):727-730. 被引量:5

二级参考文献11

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2CHUNG S Y, BERENSTEIN C A. ω- Harmonic function and inverse conductivity problems on networks [ J ]. SIAM J Appl Math,2005,56(4) :1 200- 1 226.
  • 3CHUNG S Y, CHUNG Y S, KIM J H. Diffusion and elastic equations on networks[ J]. Publ Res Inst Math Sci ,2007,43 (3) : 699- 725.
  • 4TRINAJSTIC N,BABIC D,NIKOLI S. The Laplaeian matrix in chemistry[J]. J Chem Inf Comput Sei,1994,34(2) :368- 376.
  • 5ZAKRZEWSKI W J. Laplacians on lattices[ J]. J Nonlinear Math Phys ,2005,12(4) :530- 538.
  • 6ELMOATAZ A, LEZORAY O, BOUGLEUX S. Nonlocal discrete regularization on weighted graphs:a framework for image and manifold processing [ J ]. IEEE Tans Image Process, 2008,17 (7) : 1 047 - 1 060.
  • 7TA V T, LEZORAY O, ELMOATAZ A, et al. Graph -based tools for microscopic cellular image segmentation [ J ]. Pattern Recognition, 2009,42 (6) : 1 113- 1 125.
  • 8CHUNG Y S, LEE Y S, CHUNG S Y. Extinction and positivity of the solutions of the heat equations with absorption on net- works[J]. J Math Anal Appl,2011,380(2) :642- 652.
  • 9WOJCIECHOWSIK R K. Heat kerel and essential spectrum of infinite graphs [ J ]. Indiana University Mathematics Journal, 2009,58(2) :1 419- 1 441.
  • 10陈大学,周树清,夏学文,龙玉花.偶数阶非线性中立型阻尼微分方程的振动性与渐近性[J].云南大学学报(自然科学版),2007,29(6):551-559. 被引量:3

共引文献4

同被引文献5

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部