期刊文献+

矩形通道内过冷流动沸腾传热特性试验研究 被引量:7

Experiments on Subcooled Flow Boiling Heat Transfer in a Rectangular Channel
下载PDF
导出
摘要 以高强化发动机缸盖材料蠕铁作为加热块材料,在矩形通道内开展了接近发动机冷却系统的不同流动工况下过冷沸腾传热特性的试验研究。流动工况取发动机常用范围:压力为0.10-0.25MPa,主流温度为60-95℃,流速为0.347-6m/s。研究结果表明:提高冷却液流速可以强化壁面对流换热强度,但是存在沸腾换热的低流速工况同样能够达到高流速工况下换热效果,系统压力和主流温度都会影响冷却液过冷度,进而影响沸腾传热效果。可视化结果表明:气泡直径增大、生长频率升高及气泡之间相互作用都会使气泡对边界层流体扰动增强,从而提高传热效率。在压力为0.2MPa、主流温度为95℃、流速为1m/s工况下,在壁温达到170℃以上时沸腾开始出现,在壁温达到210℃时,沸腾传热效率比单相对流换热提高了40%以上。 Experiments on subcooled boiling flow in rectangular channel under different flow conditions of a similar engine cooling systerm were conducted, using heating block with VGCI as the high-reinforced engine cylinder head material. The flow conditions were within the engine's common operating range. Which should be related to the pressure from 0.1 MPa to 0. 25 MPa, the temperature from 60 ℃ to 95 ℃, and the flow velocity from 0. 347 m/s to 6 m/s. The results shows that the improved coolant flow rate can enhance convection heat transfer, but low velocity boiling heat transfer can achieve the same effect of high velocity heat transfer. Because system pressure and main stream temperature will affect coolant subcooling, thereby affecting the boiling heat transfer. The visualization results shows that., increasing the bubble diameter, the growth frequency, and the interaction between the bubbles will cause the boundary layer flow disturbances to increase, so as to enhance the heat transfer efficiency. At the pressure of 0.2 MPa, main stream temperature of 95℃ and flow velocity of 1 m/s, the boiling occurs when the wall temperature reaches 170 ℃above. When the wall temperature is 210 ℃, the boiling heat transfer efficiency will increase by more than 40% as compared to that of single-phase flow.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2016年第2期111-115,共5页 Chinese Internal Combustion Engine Engineering
关键词 内燃机 柴油机 冷却水腔 强制流动 过冷沸腾 IC engine diesel engine cooling water jacket forced flow subcooled boiling
  • 相关文献

参考文献8

  • 1董非,郭晨海,范秦寅,蔡忆昔,姜树李.发动机冷却水腔内沸腾传热的模拟研究[J].内燃机工程,2011,32(4):76-82. 被引量:13
  • 2李智.天然气发动机气缸盖热负荷及冷却水腔内沸腾传热研究[D].武汉:华中科技大学,2012.
  • 3CACMPBELL N A F, HAWLEY J G, ROBINSON K. Pridictions for nucleate boiling-results [rom a thermal bench marking exercise under tow flow conditions[C]//SAE Paper. Detroit, Michigan, USA, 2002,2002-01 1028.
  • 4刘永,李国祥,付松,石秀勇,白书战.一种适用于缸盖水腔沸腾传热计算的模型[J].内燃机学报,2008,26(1):76-82. 被引量:11
  • 5P H, DAS S. Numerical simulation of subcooled nucleate boiling in cooling jacket of IC engine[C]//SAE Paper. l)etmit, IVfichigan, USA, 2013,2013-01-1651.
  • 6T()RREGROSA A J, BR()ATCH A, OLMEDA P, et al. Experiments on subcooled flow boiling in I. C. engine-like conditions at low flow velocities[J]. Experimental Thermal and Fluid Science, 2014(52) : 347-354.
  • 7LEE H S. Heat transfer predictions using the ehen correlation on subcooled flow boiling in a standard IC engine[C]//SAE Paper. Detroit, Michigan, USA, 2009,2009-01-1530.
  • 8STEINER H, KOB()R A, GEBHARD L. A wall heat transfer model for subcooled boiling flow[J]. International Journal of Heat and Mass Transt'er,2005,48(19):4161-4173.

二级参考文献21

  • 1麦华志,李国祥.缸盖冷却水的单相流沸腾模型[J].山东内燃机,2005(2):8-11. 被引量:8
  • 2张强,李娜,王志明.车用柴油机缸盖冷却水腔的CFD分析[J].车用发动机,2005(6):59-62. 被引量:16
  • 3何小霞.PowerBuilder基于VC++DLL的编程实现[J].衡水学院学报,2006,8(1):36-38. 被引量:2
  • 4肖翀,左正兴,覃文洁,郭良平.柴油机气缸盖的耦合场分析及应用[J].车用发动机,2006(4):26-29. 被引量:31
  • 5Frank M. White, heat and mass transfer[M]. USA:Prentice Hall, 1988.
  • 6Guglielmini G, Nannel E, Pisoni C. Survey of heat transfer correla- tions in forced convection boiling[J]. Heat and Mass Transfer, 1980,13(3) : 177-185.
  • 7Collier J G, Thome J R. Convective boiling and condensation 3rd ed[M]. Oxford: Claredon Press,1994.
  • 8Bowring W R. Physical model of bubble detachment and void volume in subeooled boiling[S]. OECD Halden Reactor Project Report No. HPR-10,1962.
  • 9Bergles A E, Rohsenow W M. The determination of forced convection surface boiling heat transfer[J]. Trans. ASME J. Heat Transfer, 1964,86:365-372.
  • 10Steiner H, Kobor A, Gebhard L. A wall heat transfer model for subcooled boiling flow[J]. International Journal of Heat and Mass Transfer,2005,48(20) :4161-4173.

共引文献19

同被引文献34

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部