期刊文献+

混合放电臭氧发生的反应动力学模拟 被引量:1

Chemical Kinetics Simulation of Ozone Production Using Multi-discharge
下载PDF
导出
摘要 为揭示混合放电臭氧高效发生机理,从反应动力学出发,采用CHEMKIN中Plasma PSR模块对混合放电臭氧发生的反应动力学进行了模拟,并作了敏感性分析和ROP分析,模拟结果与实验结果较相符。模拟结果表明气体压力、气体进口温度、气源流量的减小都有利于臭氧浓度的提高;比能的适当增加有利于臭氧的产生,过大则不利于臭氧合成。由反应路径图得到对臭氧合成的重要组分有O、O(1D)、O_2(b^1∑),并从微观动力学角度进一步验证和说明比能不能过大,因为臭氧前驱物氧原子的最主要途径E+O_2=>O+O+E随着比能和温度的增加,其对臭氧合成的影响下降。另外O(1D)、O_2(b^1∑)以及过多的O的存在不利于臭氧的产生。 A chemical kinetics model, which was established based on plasma Perfectly Stirred Reactor of CHEMKIN, was used to simulate chemical kinetics of ozone generation using multi-discharge and to analyze sensitivity and rate of production.The simulation results show that the prediction agrees well with experimental data, and the ozone concentration increases with decreasing gas pressure, inlet gas temperature and oxygen gas rate. Proper increase of specific energy is benefit for ozone generation, but excessive specific energy show opposite behavior. In terms of reaction pathway of ozone production, O, O(1D) and O2(b1^∑) are the most important species for ozone generation. The fact that the specific energy can't be too high are verified and explained from microcosmic chemical kinetics view again, because the effect of major reaction for generating ozone precursor O atom E+O2=O+O+E on ozone production decreases with increasing specific energy and temperature. In addition, the existences of O(1D), O2(b1^∑) and excessive O are unfavorable for ozone generation.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第3期745-752,共8页 High Voltage Engineering
基金 国家自然科学基金(11105067 51366012) 江西省青年科学家(井冈之星)培养对象计划项目(20133BCB23008) 江西省高等学校科技落地计划项目(KJLD-14015)~~
关键词 混合放电 臭氧 臭氧发生器 化学动力学 CHEMKIN 敏感性分析 生成速率分析 multi-discharge ozone ozonizer chemical kinetic CHEMKIN sensitivity analysis rate of production analysis
  • 相关文献

参考文献26

  • 1Chang J S, Lawless P A, Yamamoto T. Corona discharge processes[J]. 1EEE Transactions on Plasma Science, 1991, 19(6): 1152-1166.
  • 2陈波,杨学昌,陶顺忠.等离子喷涂介质层提升臭氧发生器性能的试验研究[J].高电压技术,2013,39(7):1703-1709. 被引量:8
  • 3周杨,姜慧,章程,车学科,严萍,邵涛.纳秒和微秒脉冲激励表面介质阻挡放电特性对比[J].高电压技术,2014,40(10):3091-3097. 被引量:23
  • 4郝玲艳,李清泉,毕晓甜,刘宾.沿面介质阻挡放电等离子体特性参数的仿真计算[J].高电压技术,2014,40(10):3018-3024. 被引量:9
  • 5Wei L S, Yuan D K, Zhang Y F, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier dis- charge[J]. Vacuum, 2014, 104: 61-64.
  • 6Takamura N, Matsumoto T, Wang D, et al. Ozone generation using posi- tive- and negative- nano-seconds pulsed discharge[C]//IEEE International Pulsed Power Conference. Chicaga, USA: IEEE, 2011: 1300-1303.
  • 7Yukiharu N, Toshikazu O, Seiji K, et al. Improvement of ozone yield by a silent-surface hybrid discharge ozonizer[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1458-1462.
  • 8Kazunori H, Daisaku T, Satoshi I, et al. Spatial distribution and cha- racteristics of ozone generation with glow discharge using a double discharge method[J]. Japanese Journal of Applied Physics, 1999, 38(1A): 221-224.
  • 9Ma H B, Qiu Y C. A Study of ozone synthesis in coaxial cylinder pulsed streamer corona discharge reactors[J]. Ozone Science & Engi- neering, 2003, 25(2): 127-135.
  • 10Hee-Stmg A, Nobuya H, Satoshi I, et al. Ozone generation characteris- tics by superimposed discharge in oxygen-fed ozonizer[J]. Japanese Journal of Applied Physics, 2003, 42(10): 6578-6583.

二级参考文献110

  • 1蒋爱丽,陈烨璞,华明.臭氧发生器研究的进展[J].高电压技术,2005,31(6):52-54. 被引量:10
  • 2李永梅,朱天宇,王振绪.管式臭氧发生元件的分类与特性分析[J].河海大学常州分校学报,2006,20(1):6-9. 被引量:1
  • 3宋慧敏,李应红,魏沣亭,张朴.等离子体电流体动力激励器的建模与仿真[J].高电压技术,2006,32(3):72-74. 被引量:27
  • 4Kogelschatz U. Dielectric barrier discharges: their history, dis- charge physics, and industrial applications[J].Plasma Chemis try and Plasma Processing, 2003, 23(1) : 1-46.
  • 5Kogelschatz U, Eliasson B, Hirth M. Ozone generation from oxygen and air: discharge physics and reaction mechanisms[J]. Ozone: Science & Engineering, 1988, 10(4): 367- 378.
  • 6Semin M, Novoselova P. Use of additions of ferroelectric sub- stances to improve the dielectric properties of glass enamels[J]. Glass and Ceramics, 2010, 67(5) : 179-183.
  • 7Jodzis S, Petryk J. Computer modeling of gas temperature in the ozonizer gap: effects generated by a single microdischarge [J]. IEEE Transactions on Plasma Science, 2011, 39 (11) : 2126 -2127.
  • 8Kitayama J, Kuzumoto M. Theoretical and experimental study on ozone generation characteristics of an oxygen fed ozone gen- erator in silent discharge[J]. Journal of Physics D: Applied Physics, 1997, 30(17): 2453-2461.
  • 9Ozonek J, Fijalkowski S, Czerwifiski J. Thermodynamic as pects of equilibrium ozone generation[J]. Plasma Processes and Polymers, 2007, 4(7/8): 701-709.
  • 10Sung Y, Sakoda T. Optimum conditions for ozone formation in a micro dielectric barrier discharge[J]. Surface and Coatings Technology, 2005, 197(2/3): 148-153.

共引文献39

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部