期刊文献+

氦气对低温液氧箱体分层压增的影响

Influence of Helium on Process of Thermal Stratification and Pressurization in Cryogenic Liquid Oxygen Tank
下载PDF
导出
摘要 为研究气枕中氦气对低温液氧分层及压增的影响,以柱状液氧箱体为例,通过改变气枕中氦气以及氧气含量来改变箱体初始压力,分别计算了初始箱体压力相同以及初始箱体压力不同两种工况下液氧分层压增参数的变化。结果表明:氦气的存在增强了气枕与箱体壁面以及气液界面的对流换热,促进了界面的蒸发相变,并带来了质扩散传递。当箱体初始压力不变时,箱体压增以及气液界面相变量随着氦气含量的增加而增加。在初始氦含量由0.0kg增加到0.563kg的过程中,箱体压增增加了20.91%,气液界面总相变量增加到初值的7.87倍。当箱体初始氧含量保持不变时,箱体压增随着氦气含量的增加而减小,而界面总相变量则呈现相反的变化趋势。在初始氦含量由0.0kg增加到0.2kg的过程中,箱体压增下降了28.66%,但气液总相变量却增加到初值的4.3倍。 Cylindrical liquid oxygen tank is chosen to investigate the effect of helium on the process of thermal stratification development and pressurization.The initial tank pressure can be adjusted by changing proportions of gas helium and gas oxygen.The variations of thermal stratification and pressurization parameters are analyzed under conditions of equal and different initial tank pressure.It is found that gas helium enhances the natural convection intensity occurring between tank wall and liquid-vapor interface to strengthen evaporation phase change and mass diffusion.When the initial tank pressure keeps constant,both tank pressure increment and total phase change amount rise with increasing helium component.When the initial gas helium ranges from 0.0kg to 0.563 kg,the tank pressure increment rises by 20.91%,the total phase change amount rises by 7.87 times.When the initial oxygen keeps constant,the tank pressure increment drops with the increasing initial helium quantity,and the total phase change amount tends oppositely.When the initial gas helium ranges from 0.0kg to 0.2kg,the tank pressure increment drops by 28.66%,and the total phase change amount rises by 4.3times.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第4期139-146,共8页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51376142) 航天低温推进剂技术国家重点实验室开放课题资助项目(SKLTSCP1505)
关键词 氦气 低温液氧箱体 热分层 质扩散 Helium cryogenic liquid oxygen tank thermal stratification mass diffusion
  • 相关文献

参考文献14

  • 1CLARK J A. A review of pressurization, stratification and interfacial phenomena [J]. Int Advances in Cryo- genic Engineering, 1964, 10: 259-283.
  • 2DAS S P, CHAKRABORTY S, DUTTA P. Studies on thermal stratification phenomenon in LH2 storage vessel [J]. Heat Transfer Engineering, 2004, 25 (4) : 54-66.
  • 3KUMAR S P, PRASAD B V S S S, VENKATAR- ATHNAM G, et al. Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios [J]. International Journal of Hydrogen Energy, 2007, 32(12): 1954-1960.
  • 4DUVAL W M B, BALASUBRAMANIAM R. Con- vection effects on thermal stratification inside enclo- sures due to wall heat flux [C] /// Proceedings of 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA.. AIAA, 2008: 1-22.
  • 5KHURANA T K, PRASAD B, RAMAMURTHI K, et al. Thermal stratification in ribbed liquid hydrogen storage tanks [J]. International Journal of Hydrogen Energy, 2006, 31(15):2299-2309.
  • 6FU J, SUNDEN B, CHEN X. Influence of wall ribs on the thermal stratification and self-pressurization in a cryogenic liquid tank [J]. Applied Thermal Engineer- ing, 2014, 73(2): 1421-1431.
  • 7FAURE J M, OLIVEIRA J M, CHINTALAPATI S, et al. Effect of isogrid-type obstructions on thermal stratification in upper-stage rocket propellant tanks [J]. Journal of Spacecraft and Rockets, 2014, 51(5): 1587-1602.
  • 8OLIVEIRA J M, KIRK D R, SCHALLHORN P. Analytical model for cryogenic stratification in a rota- ting and reduced-gravity environment [J]. Journal of Spacecraft and Rockets, 2009, 46(2): 459-465.
  • 9范瑞祥,黄兵,田玉蓉.高温气体增压对液氧贮箱壁面温度影响研究[J].导弹与航天运载技术,2013(5):76-81. 被引量:10
  • 10杨修东,尚存存,王文.液氧贮箱自生增压过程中气枕状态分析[J].上海航天,2014,31(4):59-63. 被引量:6

二级参考文献81

  • 1王补宣.工程传热传质学[M].北京:科学出版社,1982.1-20.
  • 2陶文铨.数值传热学[M].西安:西安交通大学出版社.2002.
  • 3Elliot Ring. Rocket propellant and pressurization systems[M]. California: Prentice-Hall, 1964.
  • 4Stochl Robert J, Maloy Josepb E, Masters Pbillp A. Gaseous-helium requirements for the discharge of liquid hydrogen from a 3.96-meter- (13-fx") Diameter Spherical Tank[R]. NASA TN D-7019, 1970.
  • 5Stochl Robert J, Maloy Josepb E, Masters Pbillp A. Gaseous-helium requirements for The discharge of liquid hydrogen from a 1.52-meter- (5-ft) diameter spherical tank[R]. NASA TN D-5621, 1970.
  • 6Stochl Robert J. Gaseous-hydrogen requirements for The discharge of liquid hydrogen from a 3.96-meter- (13-FT-)diameter spherical tank[R]. NASA TN D-5387, 1969.
  • 7Stoehl Robert J. Gaseous-hydrogen requirements for the discharge of liquid hydrogen from a 1.52-meter- (5-it-)diameter spherical tank[R]. NASA TN D-5336, 1969.
  • 8Roudebusb William H. An analysis of the problem of tank pressurization during outflow[R]. NASA TN D-2585, 1965.
  • 9Masters Philip A. Computer programs for pressurization (ramp) and pressurized expulsion from a cryogenic liquid propellant tank[R]. NASA TN D-7504, 1974.
  • 10Sabnick H D, mile G. Numerical simulations of transients in feed systems of cryogenic rocket engines[R]. AIAA 95-2967, 1995.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部