期刊文献+

不饱和糖功能单体接枝聚氨酯膜的制备及其血液相容性

Preparation and Hemocompatibility of Polyurethane Films Grafted with an Unsaturated Sugar-Based Functional Monomer
下载PDF
导出
摘要 通过葡萄糖、丙烯酸羟乙酯和丁二胺反应,制备了含不饱和双键的糖基功能单体。采用傅里叶红外光谱和核磁共振氢谱对合成的产物进行结构表征确定。采用紫外光引发接枝聚合技术,将制备的不饱和糖单体接枝聚合到聚氨酯膜的表面,以衰减全反射模式下傅里叶红外光谱对表面接枝反应进行了确认。通过静态水接触角实验和血小板黏附实验,分别对改性聚氨酯膜表面的亲水性和血液相容性进行了研究,结果表明,改性聚氨酯膜表面的接触角从86°降低到45°,血小板的粘附量由14.36×103cells/mm2减少到2.57×103cells/mm2,亲水性明显增强,血液相容性显著改善。 A sugar-based functional monomer containing double bond was synthesized by the reaction of Dglucose,hydroxylethyl acrylate and 1,4-butanediamine. The as-prepared compound was confirmed by Fourier transform infrared spectroscopy( FTIR) and proton nuclear magnetic resonance spectroscopy(1H NMR). The unsaturated sugar monomer was grafted onto the surface of polyurethane( PU) films by UV-induced grafting polymerization. The surface grafting polymerization was confirmed by FTIR in the attenuated total reflection mode( ATR-FTIR). Water contact angle measurement and platelet adhesion were used to study the hydrophilicity and hemocompatibility of the modified PU films,respectively. It is found that the contact angle of modified PU films decreases from 86° to 45°,and the amount of platelet adhesion is reduced from 14. 36 ×10^3cells / mm^2 to 2. 57 × 10^3 cells / mm^2. The hydrophilicity of the modified PU films is obviously enhanced and a more hemocompatible interface can be obtained between the film and the biomolecules.
出处 《应用化学》 CAS CSCD 北大核心 2016年第4期412-418,共7页 Chinese Journal of Applied Chemistry
基金 国家自然科学基金(21404088) 山东省自然科技基金(ZR2015EM036)资助项目~~
关键词 糖功能单体 聚氨酯 紫外光引发接枝聚合 血小板粘附 sugar functional monomer polyurethane UV-induced graft polymerization platelet adhesion
  • 相关文献

参考文献29

  • 1Schreader K J,Bayer I S,Milner D J,et al.A Polyurethane-Based Nanocomposite Biocompatible Bone Adhesive[J]. J Appl Polym Sci,2013,127(6):4974-4982.
  • 2Alves P,Cardoso R,Correia T R,et al.Surface Modification of Polyurethane Films by Plasma and Ultraviolet Light to Improve Haemocompatibility for Artificial Heart Valves[J]. Colloid Surf B,2014,113:25-32.
  • 3Williams D F. On the Mechanisms of Biocompatibility[J]. Biomaterials,2008,29(20):2941-2953.
  • 4Tan D S,Li Z,Yao X L,et al.The Influence of Fluorocarbon Chain and Phosphorylcholine on the Improvement of Hemocompatibility:A Comparative Study in Polyurethanes[J]. J Mater Chem B,2014,2(10):1344-1353.
  • 5Muppalla R,Rana H H,Devi S,et al.Adsorption of Ph-Responsive Amphiphilic Copolymer Micelles and Gel on Membrane Surface as an Approach for Antifouling Coating[J]. Appl Surf Sci,2013,268:355-367.
  • 6石强,栾世方,金晶,石恒冲,殷敬华,李勇刚.通用高分子材料的化学和生物改性及其血液相容性研究[J].中国材料进展,2014,33(4):212-223. 被引量:10
  • 7Zanini S,Riccardi C,Grimoldi E,et al.Plasma-Induced Graft-Polymerization of Polyethylene Glycol Acrylate on Polypropylene Films:Chemical Characterization and Evaluation of the Protein Adsorption[J]. J Colloid Interf Sci,2010,341(1):53-58.
  • 8Xiu K M,Cai Q,Li J S,et al.Anti-Fouling Surfaces by Combined Molecular Self-Assembly and Surface-Initiated Atrp for Micropatterning Active Proteins[J]. Colloid Surf B,2012,90:177-183.
  • 9Deng J P,Wang L F,Liu L Y,et al.Developments and New Applications of Uv-Induced Surface Graft Polymerizations[J]. Prog Polym Sci,2009,34(2):156-193.
  • 10Zhao H Y,Feng Y K,Guo J T. Grafting of Poly(Ethylene Glycol) Monoacrylate onto Polycarbonateurethane Surfaces by Ultraviolet Radiation Grafting Polymerization to Control Hydrophilicity[J]. J Appl Polym Sci,2011,119(6):3717-3727.

二级参考文献50

  • 1Michel V. Polymeric Biomaterials: Strategies of the Past vs. Strategies of the Future [ J ]. Progress Polymer Science, 2007, 32 (8 -9) : 755 -761.
  • 2Wemer C, Mait M F, Sperling C. Current Strategies Towards Hemocompatible Coatings [ J ]. Journal of Material Chemistry, 2007, 17 (32) : 3 376 -3 384.
  • 3Cheng H, Ynan L, Song W, et aL Biocompatible Polymer Mate- rials : Role of Protein-surface Interactions [ J ]. Progress Polymer Science, 2008, 33 (11) : 1 059 - 1 087.
  • 4Basmadjian D, Sefton M V, Baldwin S A. Coagulation on Bi- omatirals in Flowing Blood: Some Theoretical Consideration [ J]. Biomaterials, 1997, 18 (23): 1 511- 1 522.
  • 5Roach P, Farrar D, Perry C C. Surface Tailoring for Controlled Protein Adsorption: Effect of Topography at the Nanometer Scale and Chemistry [ J ]. Journal of the American Chemical Society, 2006, 128 (12) : 3 939 -3 945.
  • 6Evan A, Donald L. Mass Spectrometric Mapping of Fibrinogen Conformation at Poly ( ethylene terephthalate ) Interfaces [ J ]. Biomaterials, 2007, 28 (27) : 3 904 -3 917.
  • 7Li Z, Kim E S, Bearer E L. Arp2/3 Complex is Required for Actin Polymerization during Platelet Shape Change [ J ]. Blood, 2002, 99(12) : 4 466 -4 474.
  • 8Ruggeri Z M, Mendolicchio G L. Adhesion Mechanisms in Plate- let Function. Circulation Research, 2007, 100 (12) : 1 673 - 1 685.
  • 9Zhou R, Vogler E A. Practical Application of a Chromogenic FXIIa Assay [ J]. Biomaterials, 2006, 27 (28) : 4 840 - 4 845.
  • 10Gorbet M B, Sefton M V. Complement Inhibition Reduces Ma- terial-induced Leukocyte Activation with PEG Modified Polysty- rene Beads (Tentagel) but not Polystyrene Beads [ J]. Journal of Biomedical Materials Research A, 2005,74 (4) : 511 - 522.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部