期刊文献+

格基约减辅助的低复杂度列表检测

A Lattice Reduction-Aided Low-Complexity List Detection
下载PDF
导出
摘要 格基约减作为一种矩阵近似正交化方法,能够显著改善传统MIMO检测算法的性能。推导了格域星座点各分量之间的递推约束关系,并提出了格基约减辅助的列表SML-SIC检测算法,相比格基约减辅助的列表SIC检测,获得了更好的性能。在所提算法中,列表检测的子检测器为SML-SIC检测,它是将2维的列表检测器(SML)与连续干扰抵消(SIC)检测方法相结合,基于串行干扰抵消思想,用SML检测器每次对两个符号进行检测,获得了比SIC检测更高的分集增益。另外,提出局部格基约减辅助的列表检测,选择列表长度等于调制阶数,并对较低维的信道矩阵进行格基约减,复杂度有所下降,但获得和格基约减辅助的列表检测相同的性能。 Lattice reduction, as an approximate matrix orthogonalization method, could markedly improve the performance of traditional MIMO detection. The recursive constraint relations among the components of constellation point in lattice domain are derived, and a lattice reduction aided list SML-SIC detection algo- rithm also proposed, this algorithm enjoys better performance as compared with lattice reduction aided list SIC detection. In the proposed algorithm, as the sub-detector of list detection, with combination of 2d list detector (SML) with SIC detection method, and based on the idea of successive interference cancellation, SML-SIC algorithm could detect two symbols each time by using SML detector, and acquire higher diversi- ty gain than SIC detection. In addition, a partly lattice reduction aided list detection is proposed, the length of list is selected to be equal to modulation order, and a lower dimensional channel matrix is pro- cessed in lattice reduction, thus to decrease the complexity while maintaining the identical performance with lattice reduction aided detection.
机构地区 国防科技大学
出处 《通信技术》 2016年第4期402-407,共6页 Communications Technology
基金 国家自然科学基金(No:61401492)~~
关键词 格基约减 MIMO检测 列表检测 连续干扰抵消 lattice reduction, MIMO detection, list-based detection, successive interference cancellation
  • 相关文献

参考文献11

  • 1Lozano A, Jindal N. Transmit Diversity vs. Spatial Multi-plexing in Modem MIMO Systems [J], IEEE Transactionson Wireless Communications ,2010,9(1) :186-197.
  • 2Mietzner J, Schober R, Lampe L, et al. Multiple - Anten-na Techniques for Wireless Communications - A Compre-hensive Literature Survey [ J ] . IEEE CommunicationsSurveys and Tutorials, 2009 , 11(2) :87-105.
  • 3ZHENG L, XIE D. Diversity and Multiplexing: A Funda-mental Tradeoff in Multiple 一 Antenna Channels [ J ].IEEE Transactions on Information Theory,2004,92(2):198-218.
  • 4张茜,周围.一种改进的对偶格基辅助MIMO信号检测算法[J].通信技术,2015,48(10):1116-1119. 被引量:1
  • 5Senning C,Bruderer L, Hunziker J, et al. A Lattice Re-duction-Aided MIMO Channel Equalizer in 90 nm CMOSAchieving 720 Mb/s [ J ]. IEEE Translations on Circuitsand Systems—I;REGULAR PAPERS,2014,61(6) :1-12.
  • 6CHEN C,Sheen W. A New Lattice Reduction Algorithmfor LR—Aided MIMO Linear Detection [ J ] . IEEE Transla-tions on Wireless communications, 2011, 10(8) : 2417-2422.
  • 7ZHAO K,DU S. Full — Diversity Approximated LatticeReduction Algorithm for Low - Complexity MIMO Detec-tion [J ] . IEEE Communication Letts, 2014,18 (6):1079-1082.
  • 8ZHOU Q, MA X. Element—based Lattice Reduction Al-gorithms for Large MIMO Detection [ J]. IEEE J. Sel.Areas Communication, 2013 , 31(2) ;274-286.
  • 9ZHANG W,MA X,Swami A. Designing Low-Complexi-ty Detectors based on Seysen ’ s Algorithm,[ J ] . IEEETranslation on Wireless Communication, 2010,9( 10):3301-3311.
  • 10Kim H,Park J. Near-ML MIMO Detection AlgorithmWith LR-Aided Fixed-Complexity Tree Searching[ J ].IEEE Communication Letts, 2014,18(12) :1-4.

二级参考文献10

  • 1Schnorr C P, Euchner M. Lattice Basis Reduction Im- prove Practical Algorithms and Solving Subsets Sum Problems, 1993.
  • 2MA Xiao-li, WEI Zhang. Performance Analysis for MI- MO Systems with Lattice Reduction Aided Linear Equali- zation [ J ]. IEEE Transactions on Communications, 2008, 56(2) :309-318.
  • 3HUAN Yao, Womall, Gregory W. Lattice Reduction Aided Detectors for MD4O Communication Systems [ C ], IEEE Global Telecommunications Conference,2002:424-428.
  • 4WANG Xing-lin, GONG Ping, NIU Kai. Dicision Feed- back Aided Detection based on Lattice Reduction in MI- MO System [ C ]. IEEE 63rd Conference on Vehicular Technology, 2006 : 1708-1712.
  • 5Dirk Wubben, Dominik Seethaler, Joakim Jalden, et al. Lattice Reduction [ M ]. IEEE Signal Processing Maga- zine, 2011.
  • 6Md R U D Rajib, Jin Gyun Chung, Moon Ho Lee. Com- plex Lattice Reduction Aided Detection for Muhiuser MI- MO Systems in Dual Basis. IEEE International Symposim on Consumer Electronics, 2014 : 1-4.
  • 7WEI Hou, Tadashi Fujino, Toshiharu Kojima. Efficient Quantization Scheme for Lattice-Reduction Aided MIMO Detection, The 2013 International Conference on Ad- vanced Technologies for Communications, 2013.
  • 8孙艳华,王浩,张延华.复数域格缩减的MIMO检测算法研究[J].电子科技大学学报,2010,39(5):670-675. 被引量:5
  • 9郭明喜,沈越泓.基于对偶格基缩减的MIMO检测算法[J].数据采集与处理,2010,25(6):696-701. 被引量:3
  • 10刘金铸,邢松,沈连丰.Ordered successive noise projection cancellation algorithm for dual lattice-reduction-aided MIMO detection[J].Journal of Southeast University(English Edition),2013,29(3):229-234. 被引量:2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部