期刊文献+

具时滞阶段结构和非线性发生率的SIS模型 被引量:1

SIS Epidemic Model with Time Delay,Stage-structrue and Nonlinear Incidence
下载PDF
导出
摘要 研究了一类具有时滞、阶段结构和非线性发生率的SIS传染病模型;讨论了平衡点的存在性,并利用Routh-Hurwits判据和超越函数零点判别法探究了平衡点的局部渐近稳定性,给出了此类传染病平衡点的局部渐近稳定性的判定定理,结论为卫生部门的疾病防控工作提供了一定的理论支持. A class of an SIS epidemic model with delay,stage-structure and nonlinear incidence is established and analyzed. The existence of equilibrium points is discussed and its local asymptotic stability of equilibrium is discussed by the Routh-Hurwits and transcendental function zero distinction. Furthermore,the determinating theorem for the local asymptotic stability of this class of the epidemic is given,the conclusion provides some theoretical support for the disease control and prevention in the health sector.
出处 《重庆工商大学学报(自然科学版)》 2016年第2期1-4,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 陕西省自然科学基金项目(2014JM1019) 陕西省教育厅科研基金项目(14JK1225)
关键词 时滞 阶段结构 非线性发生率 局部渐近稳定性 delay stage-structure nonlinear incidence local asymptotic stability
  • 相关文献

参考文献9

二级参考文献36

  • 1郑丽丽,王豪,方勤华.一类具有非线性传染力的阶段结构SI模型[J].数学的实践与认识,2004,34(8):128-135. 被引量:7
  • 2徐文雄,张素霞.具非线性传染率染病年龄结构SIR流行病模型渐近分析[J].应用科学学报,2005,23(3):315-318. 被引量:2
  • 3陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 4Horst R Thieme, CarlosCastillo-Chavez. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math,1993,53(5):1 447-1 479.
  • 5马知恩(MaZhi-en).种群生态学的数学建模与研究(The Mathematical Modeling and Study of the Population Ecology)[M].合肥:安徽教育出版社(Hefei:Anhui Education Press),1996.
  • 6Webb G F. Theory of Nonlinear Age-Dependent Population Dynamics[ M ]. New York: Marcel Dekker, 1985.
  • 7Miller R K. Nonlinear Voherra Integral Equations [ M ]. New York: W A Benjamin Inc,1971.
  • 8Aiello W G and H I Freedman. A time-delay model of single-species growth with stage structure[J]. Math Biosci, 1990, 101: 139-153.
  • 9Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. Academic Press, San Diego, CA, 1993.
  • 10Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics[M]. Dordrecht: Kluwer Academic Publishers, 1992.

共引文献32

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部