摘要
研究了一类具有时滞、阶段结构和非线性发生率的SIS传染病模型;讨论了平衡点的存在性,并利用Routh-Hurwits判据和超越函数零点判别法探究了平衡点的局部渐近稳定性,给出了此类传染病平衡点的局部渐近稳定性的判定定理,结论为卫生部门的疾病防控工作提供了一定的理论支持.
A class of an SIS epidemic model with delay,stage-structure and nonlinear incidence is established and analyzed. The existence of equilibrium points is discussed and its local asymptotic stability of equilibrium is discussed by the Routh-Hurwits and transcendental function zero distinction. Furthermore,the determinating theorem for the local asymptotic stability of this class of the epidemic is given,the conclusion provides some theoretical support for the disease control and prevention in the health sector.
出处
《重庆工商大学学报(自然科学版)》
2016年第2期1-4,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
陕西省自然科学基金项目(2014JM1019)
陕西省教育厅科研基金项目(14JK1225)
关键词
时滞
阶段结构
非线性发生率
局部渐近稳定性
delay
stage-structure
nonlinear incidence
local asymptotic stability