期刊文献+

基于结构正则化模型的本体算法 被引量:1

Ontology Algorithm Based on Structured Regularization
下载PDF
导出
摘要 通过结构正则化模型的优化得到本体函数,函数空间采用再生核希尔伯特空间,数据项用样本的经验误差表示,利用凸函数的范数求和得到结构扰动项,通过迭代计算得到最优解,并通过参数σ的计算来控制步长。将该算法应用于植物学PO本体和仿生机器人本体,验证了本算法对植物学领域的相似度计算和在仿生机器人领域建立本体映射的效率。 The ontology function is obtained via structural regularization model,function space is used as reproducing kernel Hilbert Space,data term is got from empirical error,disturbance term is deduced by the sum of convex function norms,the solution is achieved in terms of iterative calculation,and the step size is determined by the computation of parameterσ.The algorithm is applied to the PO and humanoid robotics ontologies.It shows that the efficiency of new algorithm for calculating the similarity in plant field and establishing the ontology mappings in humanoid robotics application.
出处 《常州大学学报(自然科学版)》 CAS 2016年第2期79-82,共4页 Journal of Changzhou University:Natural Science Edition
基金 国家自然科学青年基金资助项目(11401519) 江苏理工学院自然科学基金面上项目(KYY14013)
关键词 本体 相似度计算 本体映射 结构正则化模型 ontology similarity measure ontology mapping structured regularization model
  • 相关文献

参考文献14

二级参考文献94

  • 1黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 2Zhou D, Huang J, SchOlkopf B. Beyond pairwise classification and clustering using hypergraphs[P]. Canada.. University of Waterloo, 2005.
  • 3Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf Learning with Hypergraphs: Clustering, Classification, and Embedding[C]// Proceedings of 20th Annual Conference on Neural Information Processing SysterrLs, 2.006, Vancouver / Whistler, Canada: IEEE 2006 : 1601-1608.
  • 4Liang Sun, Shuiwang Ji, Jieping Ye. Hypergraph spectral learning for multi--label classification[C]// Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM, 2008:668--676.
  • 5Chen Gang, Zhang Jianwen, Wang Fei, et al. Efficient multi-label classification with hypergraph regulariza tion[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL USA.. IEEE, 2009 (9):1658--1665.
  • 6Sameer Agarwal, Kristin Branson, Serge Belongie. Higher order learning with graphs[C]// Proceedings of the 23rd International conference on Machine Learning, Pittsburgh, PA: ICML, 2006: 17-24.
  • 7Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf. Learning from Labeled and Unlabeled Data on a Directed Graph[C]//Proceedings of the 22nd International Con ference on Machine Learning, Bonn, Germany.. ICMI., 2005 : 1041- 1048.
  • 8Isaac Pesenson. Varialional Splines and Paley-wiener Spaces on Combinatorial Graphs[J]. Constr Approx, 2009(29) : 1-21.
  • 9Craswell N, Hawking D. Overview of the TREC 2003 web track[C]// Text Retrieval Conference (TREC). 2003 Proceedings. [s. l.].-TREC,2003.
  • 10MORK P,BERNSTEIN P.Adapting a generic match algorithm to a-lign ontologies of human anatomy[C]//Proceedings of 20th Interna-tional Conference on Data Engineering.Los Alamitos:IEEE Com-puter Society,2004:787-790.

共引文献44

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部