期刊文献+

Burgers方程的高阶紧致有限体积解法 被引量:7

A High-order Compact Finite Volume Method for Solving Burgers Equations
下载PDF
导出
摘要 本文研究Burgers方程高阶紧致有限体积方法.基于Hopf-Cole变换,非线性Burgers方程转化为线性热传导方程.继而利用四阶紧致有限体积方法,进行空间离散.时间离散采用四阶Runge-Kutta格式,然后利用Fourier分析方法,进行空间的误差分析和时间离散的稳定性分析.典型算例显示出本方法的高精度与良好的计算效果. Based on the Hopf-Cole transformation,a nonlinear Burgers equation is transformed into a linear heat equation.The space discretization is performed by a 4th order compact finite volume method.The temporal discretization is done by a 4th order Runge-Kutta scheme(RK4).The truncation error of the space discretization and the stability are also performed by using the Fourier analysis.Numerical results of some typical test cases manifest high accuracy and efficiency of the high-order compact finite volume scheme.
出处 《应用数学》 CSCD 北大核心 2016年第2期331-339,共9页 Mathematica Applicata
基金 国家自然科学基金项目(11361035 11301258) 教育部科学技术研究重点项目(12024) 内蒙古自治区人才开发基金项目(12000-1300020240) 内蒙古自然科学基金项目(2015MS0101)
关键词 BURGERS方程 Hopf-Cole变换 紧致有限体积格式 稳定性 Burgers' equation Hopf-Cole transformation Compact finite volume scheme Stability
  • 相关文献

参考文献9

  • 1Cole J D. On a quasilinear parabolic equations occurring in aerodynamics[J]. Quarterly of Applied Mathematics, 1951, 9(3):225-236.
  • 2Kutluay S, Bahadir A R., Ozdes A. Numerical solution of one-dimensional Burgers' equation: explicit and exact-explicit finite difference methods[J]. Journal of Computational and Applied Mathematics, 1999, 103(2):251-261.
  • 3Kadalbajoo M K, Awasthi A. A numerical method based on Crank-Nicolson scheme for Burgers' equation[J]. Applied Mathematics and Computation, 2006, 182(2):1430-1442.
  • 4XIE Shusene, LI Guangxing, YI Sucheol, HEO Sunyeong. A compact finite difference method for solving Burgers' equation[J]. Int. J. Numer. Meth. Fluids, 2010, 62(7):747-764.
  • 5Hopf E. The partial differential equation ut + uux = vuzz [J]. Commun. Pure Appl. Math., 1950, 3(3): 201-230.
  • 6Kobayashi M. On a class of Paddfinite volume methods[J]. J. Comput.Phys. 1999,156(1): 137-180.
  • 7Lacor C, Smirnov S, Baelmans M. A finite volume formulation of compact central scheme on arbitrary structured grids[J]. J.Comput.Phy., 2004, 198(2):533-566.
  • 8Vichnevetsky R, Bowles J. Fourier Analysis of Numerical Approximation of Hyperbolic Equations[M]. Philadelphia: SIAM, 1982.
  • 9Lomax L, PuUiam T H, Zing D W. ~ndamentals of Computational Fluid Dynamics[M]. Berlin: Springer, 2001.

同被引文献43

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部