摘要
设X,X_1,X_2(,···是一严平稳的)ρ^--混合随机变量序列.在满足一定的条件下,证明自正则部分和之和乘积(k∏i=1T_4/i(i+1)μ/2)^(μ/βV_k)的几乎处处中心极限定理,其中Sn=∑_(i=1)~nX_i,V_n^2=∑_(i=1)~nX_i^2,Tn=∑_(i=1)~nSi.
Let X,X_1,X_2,...be a strictly stationary sequence of ρ^--mixing random variables.A universal result in almost sure limit theorem for the self-normalized products of sum-() μ∏kβVk∑s of partial sums (k∏i=1T_4/i(i+1)μ/2)^(μ/βV_k) established,where Sn=∑_(i=1)~nX_i,V_n^2=∑_(i=1)~nX_i^2,Tn=∑_(i=1)~nSi.
出处
《应用数学》
CSCD
北大核心
2016年第2期438-450,共13页
Mathematica Applicata
基金
Supported by the National Natural Science Fundation of China(11361019)
the Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning([2011]47)
the Support Program of the Guangxi China Science Foundation(2013GXNSFDA019001)
the Scientic Research Project of Guangxi Colleges and Universities(KY2015ZD054)