期刊文献+

带有扰动的二阶周期可积边值问题解的存在唯一性及数值解(英文) 被引量:1

Existence,Uniqueness and Numerical Solution for Second-order Periodic-integrable Boundary Value Problems with Perturbation
下载PDF
导出
摘要 本文讨论一类带有扰动的二阶周期可积边值问题,利用变分方法和已有结果得到了问题解的存在唯一性.结果表明,在某些条件下,扰动生成非平凡解;在另一些条件下,情况完全不同.同时,文章给出这类问题的的数值解法,称之为混合打靶法,并利用数值模拟显示出算法的有效性,所得结果是已有文献的进一步深入. The existence and uniqueness of solutions for a second-order periodicintegrable boundary value problems with a perturbation was considered by variational method.The results show that the perturbation plays an important role under some conditions,and does not work under some other different conditions.On the other hand,the mixed-shooting method was established to find the numerical solution.This is a further discussion of the known results.
出处 《应用数学》 CSCD 北大核心 2016年第2期469-476,共8页 Mathematica Applicata
基金 Supported by the NNSF of China(11361047,11561043,10961020)
关键词 存在性 周期可积边值问题 扰动 数值解 Existence Periodic-integrable boundary value problem Perturbation Numerical solution
  • 相关文献

参考文献11

  • 1Attili Basem S, Syam Muhammed I. Efficient shooting method for solving two point boundary value problems[J]. Chaos, Solitons and Fractals, 2008, 35: 895-903.
  • 2Mehdi Dehghan, Ahmad Nikpour. Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method[J]. Appl. Math. Modelling, 2013, 37: 8578-8599.
  • 3HUA Hongtu, CONG Fuzhong, CHENG Yi. Notes on existence and uniqueness of solutions for second order periodic-integrable boundary value problems[J]. Appl. Math. Lett., 2012, 25: 2423-2428.
  • 4KONG Lingju. Second order singular boundary value problems with integral boundary conditions[J]. Nonlinear Anal., 2010, 72: 2628-2638.
  • 5LIU Xilan, SHI Xiaoyang. Existence of solutions for second-order periodic-integrable boundary value problems[J]. Appl. Math. Lett., 2014, 37: 91-94. K.
  • 6harab A, Guenther R B. An Introduction to Numerical Methods: A MATLAB Approach[M]. Boca Raton: CRC Press, 2011.
  • 7WANG Yuanming, GUO Benyu, WU Wenjia. Fourth-order compact finite difference methods and monotone iterative algorithms for semilinear elliptic boundary value problems[J]. Compu. Math. Appl., 2014, 68: 1671-1688.
  • 8YANG Zhilin. Positive solutions of a second-order integral boundary value problem[J]. J. Math. Anal. Appl., 2006, 321: 751-765.
  • 9YANG Zhilin. Existence and uniquess of positive solitions for an integral boundary value problem[J]. Nonlinear Anal., 2008, 69: 3910-3918.
  • 10YANG Zhilin. Exsitence of nontrival solutions for a nonliear Sturm-Liouville problem with integral boundary value conditions[J]. Nonlinear Anal., 2008, 68: 216-225.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部