期刊文献+

基于贝叶斯模型的云服务服务质量预测 被引量:3

Cloud service QoS prediction method based on Bayesian model
下载PDF
导出
摘要 针对如何分配一个未来一段时间内满足QoS要求的云服务和感知可能将要发生的QoS违规的问题,提出一种基于时间序列预测方法的云服务QoS预测方法。该预测方法利用改进的贝叶斯常均值(IBCM)模型,能够准确地预测云服务未来一段时间内的QoS状态。实验通过搭建Hadoop集群模拟云平台并收集了响应时间和吞吐量两种QoS属性的数据作为预测对象,实验结果表明:相比自回归积分滑动平均(ARIMA)模型和贝叶斯常均值折扣模型等时间序列预测方法,基于改进的贝叶斯常均值模型的云服务QoS预测方法的平方和误差(SSE)、平均绝对误差(MAE)、均方误差(MSE)和和平均绝对百分比误差(MAPE)均比前两者小一个数量级,因此具有更高的预测精度;同时预测结果对比图说明提出的预测方法具有更好的拟合效果。 For Quality of Service( QoS) guarantee of cloud service areas,a cloud service QoS prediction method based on time series prediction was proposed to select an appropriate cloud service which met QoS requirements of cloud user and perceive QoS violation may occur. The improved Bayesian constant mean model was used to predict QoS of cloud service accurately. In the experiment,a Hadoop system was established to simulate cloud computing and a lot of QoS data of response time and throughput were collected as predicted object. The experimental result shows that compared with Bayesian constant mean discount model and Autoregressive Integrated Moving Average( ARIMA) model,the proposed prediction method based on improved Bayesian constant mean model is one order of magnitude smaller than the previous methods in Square Sum Error( SSE),Mean Absolute Error( MAE),Mean Squared Error( MSE) and Mean Absolut Percentage Error( MAPE),so it has higher accuracy; and the comparison of prediction accuracy illustrate that the proposed method also has better fitting effect.
作者 陈伟 陈继明
出处 《计算机应用》 CSCD 北大核心 2016年第4期914-917,926,共5页 journal of Computer Applications
关键词 云服务 服务质量 贝叶斯模型 预测 cloud service Quality of Service(QoS) Bayesian constant mean model prediction
  • 相关文献

参考文献15

  • 1Wikipedia.Cloud computing[EB/OL].[2015-02-10].https://en.wikipedia.org/wiki/Cloud_computing.
  • 2TANG B,TANG M.Bayesian model-based prediction of service level agreement violations for cloud services[C]//TASE 2014:Proceedings of the 2014 Theoretical Aspects of Software Engineering Conference.Piscataway,NJ:IEEE,2014:170-176.
  • 3ASGHAR A,KAZEM P,PEDRAM H,et al.A Bayesian network based QoS model for grid service composition[J].Expert Systems with Applications,2015,42(20):6828-6843.
  • 4YU C,HUANG L.A Web Service QoS Prediction Approach Based on Time and Location-aware Collaborative Filtering[M].Berlin:Springer,2014:218-226.
  • 5QIU W,ZHENG Z,WANG X,et al.Reputation-aware QoS value prediction of Web services[C]//Proceedings of the 2013 IEEE 10th International Conference on Services Computing.Piscataway,NJ:IEEE,2013,43:41-48.
  • 6TONG J,HAIHONG E,SONG M,et al.Web service QoS prediction under sparse data via local link prediction[C]//Proceedings of the 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing.Piscataway,NJ:IEEE,2013:2285-2290.
  • 7ZHENG Z,WU X,ZHANG Y,et al.QoS ranking prediction for cloud services[J].IEEE Transactions on Parallel and Distributed Systems,2013,24(6):1213-1222.
  • 8FREY S,LUTHHJE C,REICH C,et al.Cloud QoS scaling by fuzzy logic[C]//Proceedings of the 2014 IEEE International Conference on Cloud Engineering.Piscataway,NJ:IEEE,2014:343-348.
  • 9LIU Z,ZONG P,XIAO X,et al.Reliable Web service composition based on QoS dynamic prediction[J].Soft Computing,2015,19(5):1409-1425.
  • 10SANZO P D,MOLFESE F M,RUGHETTI D,et al.Providing transaction class-based QoS in in-memory data grids via machine learning[C]//NCCA 2014:Proceedings of the 2014 IEEE 3rd Symposium on Network Cloud Computing and Applications.Piscataway,NJ:IEEE,2014,16:46-53.

二级参考文献10

  • 1Li Yan, Liu Yao, Zhang Liangjie, et al. An exploratory study of Web services on the Intemet[C]//Proceedings of the 2007 IEEE International Conference on Web Services (ICWS '07), Salt Lake City, UT, USA, 2007. Washington, DC, USA: IEEE Computer Society, 2007: 380-387.
  • 2Charif-Djebbar Y, Sabouret N. Dynamic service composi- tion and selection through an agent interaction protocol[C]// Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech- nology Workshops (WI-IATW '06). Washington, DC, USA: IEEE Computer Society, 2006:105-108.
  • 3Shao Lingshuang, Zhang Jing, Wei Yong, et al. Personalized QoS prediction for Web services via collaborative filtering[C]// Proceedings of the 2007 IEEE Intemational Conference on Web Services (ICWS '07), Salt Lake City, UT, USA, 2007. Wash- ington, DC, USA: IEEE Computer Society, 2007: 439-446.
  • 4Chen Liang, Feng Yipeng, Wu Jian, et al. An enhanced QoS prediction approach for service selection[C]//Proceedings of the 2011 IEEE International Conference on Services Computing (SCC '11). Washington, DC, USA: IEEE Com- puter Society, 2011: 727-728.
  • 5Godse M, Bellur U, Sonar R. Automating QoS based service selection[C]//Proceedings of the 2010 IEEE International Conference on Web Services (ICWS '10). Washington, DC, USA: IEEE Computer Society, 2010: 534-541.
  • 6Chen Leilei, Yang Jian, Zhang Liang. Time based QoS mod- eling and prediction for Web services[C]//LNCS 7084: Pro- ceedings of the 9th International Conference on Service- Oriented Computing (ICSOC 2011). Berlin, Heidelberg: Springer-Verlag, 2011: 532-540.
  • 7Lu Dong, Qiao Yi, Dinda P A, et al. Characterizing and pre- dicting TCP throughput on the wide area network[C]//Pro- ceedings of the 25th IEEE International Conference on Dis- tributed Computing Systems (ICDCS '05). Washington, DC, USA: IEEE Computer Society, 2005: 414-424.
  • 8Cranage D A, Andrew W P. A comparison of time series and econometric models for forecasting restaurant sales[J]. Inter- national Journal of Hospitality Management, 1992, 11 (2): 129-142.
  • 9Shumway R H, Stoffer D S. Time series analysis and its applications[M]. 2nd ed. Berlin: Springer, 2006.
  • 10Cryer J D, Chan K S. Time series analysis with applications in R[M]. 2nd ed. Berlin: Springer, 2008.

共引文献20

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部