期刊文献+

基于节点集计算能力差异的Hadoop自适应任务调度算法 被引量:4

Hadoop adaptive task scheduling algorithm based on computation capacity difference between node sets
下载PDF
导出
摘要 针对异构集群任务推测式执行算法存在的任务进度比例固定、落后任务被动选取等问题,提出基于快慢节点集计算能力差异的自适应任务调度算法。该算法量化节点集计算能力差异实现分集调度,并通过节点与任务速率的动态反馈及时更新快慢节点集,提高节点集资源利用率与任务并行度。在两节点集中,利用动态调整任务进度比例判别落后任务,主动选择采用替代执行方式为落后任务执行备份任务的快节点,从而提升任务执行效率。与最长近似结束时间(LATE)算法的实验对比结果表明,该算法在短作业集、混合型作业集、出现节点性能下降的混合型作业集执行时间上比LATE算法分别缩短了5.21%、20.51%、23.86%,启用的备份任务数比LATE算法明显减少。所提算法可使任务主动适应节点差异,在减少备份任务的同时有效提高作业整体执行效率。 Aiming at the problems of the fixed task progress proportions and passive selection of slow tasks in the task speculation execution algorithm for heterogeneous cluster,an adaptive task scheduling algorithm based on the computation capacity difference between node sets was proposed. The computation capacity difference between node sets was quantified to schedule tasks by fast and slow node sets,and dynamic feedback of nodes and tasks speed were calculated to update slow node sets timely to improve the resource utilization rate and task parallelism. Within two node sets,task progress proportions were adjusted dynamically to improve the accuracy of slow tasks identification,and the fast node which executed backup tasks dynamically for slow tasks by substitute execution implementation was selected to improve the task execution efficiency. The experimental results showed that,compared with the Longest Approximate Time to End( LATE) algorithm,the proposed algorithm reduced the running time by 5. 21%,20. 51% and 23. 86% respectively in short job set,mixed-type job set and mixed-type job set with node performance degradation,and reduced the number of initiated backup tasks significantly. The proposed algorithm can make the task adapt to the node difference,and improves the overall job execution efficiency effectively with reducing slow backup tasks.
出处 《计算机应用》 CSCD 北大核心 2016年第4期918-922,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202136) 江苏省科技项目(BY2013095-3-11) 江苏省高校自然科学研究项目(13KJD520007) 南京晓庄学院科研项目(2012NXY14 2013NXY99)~~
关键词 HADOOP 计算能力 自适应 任务调度 推测式执行 Hadoop computation capacity adaptive task scheduling speculation execution
  • 相关文献

参考文献16

  • 1Wikipedia.Apache Hadoop[EB/OL].[2014-07-08].http://en.wikipedia.org/wiki/Apache_Hadoop.
  • 2ZAHARIA M.Job scheduling with the fair and capacity schedulers[EB/OL].[2014-07-10].http://www.cs.berkeley.edu/-matei/talks/2009/hadoop_summit_fair_scheduler.pdf.
  • 3The Apache Software Foundation.Capacity scheduler guide[EB/OL].[2014-06-08].http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html.
  • 4ZAHARIA M,BORTHAKUR D,SARMA J S,et al.Job scheduling optimization for multi-user MapReduce clusters:UCB/EECS-2009-55[R].Berkeley:University of California,2009:1-16.
  • 5The Apache Software Foundation.Fair scheduler[EB/OL].[2014-06-08].http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html.
  • 6范杰,彭舰,黎红友.基于蚁群算法的云计算需求弹性算法[J].计算机应用,2011,31(A01):1-3. 被引量:22
  • 7杨镜,吴磊,武德安,王晓敏,刘念伯.云平台下动态任务调度人工免疫算法[J].计算机应用,2014,34(2):351-356. 被引量:13
  • 8FISCHER M J,SU X,YIN Y.Assigning tasks for efficiency in Hadoop:extended abstract[C]//Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures.New York:ACM,2010:30-39.
  • 9GE Y,WEI G.GA-based task scheduler for the cloud computing systems[C]//Proceedings of the 2010 International Conference on Web Information Systems and Mining.Washington,DC:IEEE Computer Society,2010,2:181-186.
  • 10ZAHARIA M,KONWINSKI A,JOSEPH A D,et al.Improving MapReduce performance in heterogeneous environments[C]//Proceedings of the 8th USENIX Symposium on Operating Systems Design Implementation.Berkeley,CA:USENIX Association,2008:29-42.

二级参考文献29

  • 1刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150. 被引量:16
  • 2GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 3TILAK S, ABU-GHAZALEH N B, HEINZELMAN W. A taxonomy of tireless micro-sensor network models [ J]. Mobile Computing andCommunications Review, 2002, 6(2): 28-36.
  • 4LI QING, ZHU QINGXIN, WANG MINGWEN. Design of a distrib- uted energy efficient clustering algorithm for heterogeneous wireless sensor networks[ J]. Computer Communications, 2006, 29 (12) : 2230- 2237.
  • 5PARUL S, A JAY K S. Energy etlicient scheme for clustering proweol prolonging the lifetime of heterogeneous wireless sensor networks[J]. Intematlona] Journal of Computer Applications, 2010, 6(2) : 30 -36.
  • 6HEINZELMAN W B, CHANDRAKAXAN A P, BALAKRISHNAN H. An application specific protocol architecture for wireless mi- crosensor networks[ J]. IEEE Transactions on Wireless Communica- tions, 2002, 1(4) :660 -670.
  • 7PARUL S, AJAY K S. Energy efficient scheme for clustering proto- col prolonging the lifetime of heterogeneous wireless sensor networks[ J]. International Journal of Computer Applications, 2010, 6(2) : 30 - 36.
  • 8A1-KARAKI J N, KAMAL A E. Routing techniques in wireles sen- sor network: a survey [ J]. IEEE Wireless Communications, 2004, 11 (6) : 6 -28.
  • 9HEINZELMAN W R, CHANDRAKASAN A, BALAKRISHNAN H. Energy-eflqcient communication protocol for wireless microsensor net- work[ C]// Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Washington, DC: IEEE Computer Society, 2000, 2:1 - 10.
  • 10SMARAGDAKIS G, MATrA I, BESTAVROS A. SEP: A stable e- lection protocol for clustered heterogeneous ,~reless sensor networks [ C] // Proceedings of 2nd International Workshop on Sensor and Ac- tor Network Protocol and Applications. Washington, DC: IEEE Com- puter Society, 2004:1 - 11.

共引文献50

同被引文献30

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部