期刊文献+

扩展知识图谱上的实体关系检索 被引量:5

Entity relationship search over extended knowledge graph
下载PDF
导出
摘要 现有文本数据集上的实体搜索和自然语言查询方法无法处理需要将分散在不同文档中的信息碎片链接起来以满足有复杂实体关系的查询,而知识库上的查询虽然可以表示实体间的复杂关系,但由于知识库的异构性和不完全性,通常查全率较低。针对这些问题,提出使用文本数据集对知识库进行扩展,并设计相应的含文本短语的三元组模式查询以支持对知识库和文本数据的统一查询。在此基础上,设计并实现了查询放松机制和对结果元组的评分模型,并给出了高效的查询处理方法。使用YAGO、Clue Web09和其上的FACC1数据集,在三个不同的查询测试集(实体检索、实体关系检索和复杂的实体关系查询)上与两个典型相关工作作了比较。实验结果显示,扩展知识图谱上使用查询放松规则的实体关系检索系统的检索效果大大超出了其他系统,具体地在三个查询测试集上,其平均正确率均值(MAP)比其他系统分别提升了27%、37%和64%以上。 It is difficult for entity search and question answering over text corpora to join cues from multiple documents to process relationship-centric search tasks,although structured querying over knowledge base can resolve such problem,but it still suffers from poor recall because of the heterogeneity and incompleteness of knowledge base. To address these problems,the knowledge graph was extended with information from textual corpora and a corresponding triple pattern with textual phrases was designed for uniform query of knowledge graph and textual corpora. Accordingly,a model for automatic query relaxation and scoring query answers( tuples of entities) was proposed,and an efficient top-k query processing strategy was put forward.Comparison experiments were conducted with two classical methods on three different benchmarks including entity search,entity-relationship search and complex entity-relationship queries using a combination of the Yago knowledge graph and the entity-annotated Clue Web '09 corpus. The experimental results show that the entity-relationship search system with query relaxation over extended knowledge base outperforms the comparison systems with a big margin,the Mean Average Precision( MAP) are improved by more than 27%,37%,64% respectively on the three benchmarks.
出处 《计算机应用》 CSCD 北大核心 2016年第4期985-991,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202331 61532010 61170013 61170012)~~
关键词 知识图谱 实体关系检索 实体搜索 三元组模式查询 查询放松 knowledge graph entity-relationship query entity search triple pattern query query relaxation
  • 相关文献

参考文献13

  • 1MAUSAM,SCHMITZ M,SODERLAND S,et al.Open language learning for information extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA,USA:Association for Computational Linguistics,2012:523-534.
  • 2HOVY E H,NAVIGLI R,PONZETTO S P.Collaboratively built semi-structured content and artificial intelligence:the story so far[J].Artificial Intelligence,2013,194:2-27.
  • 3HOFFART J.Robust disambiguation of named entities in text[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA,USA:Association for Computational Linguistics,2011:782-792.
  • 4GABRILOVICH E,MARKOVITCH C.Computing semantic relatedness using Wikipedia-based explicit semantic analysis[C]//Proceedings of the 20th International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,2007:1606-1611.
  • 5GALARRAGA L A,TEIOUDI C,HOSE K,et al.AMIE:association rule mining under incomplete evidence in ontological knowledge bases[C]//WWW 2013:Proceedings of 22nd International World Wide Web.New York:ACM,2013:413-422.
  • 6ZHAI C,LAFFERTY J.A study of smoothing methods for language models applied to Ad Hoc information retrieval[C]//Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2001:334-342.
  • 7FAGIN R,LOTEM A,NAOR M.Optimal aggregation algorithms for middleware[J].Journal of Computer and System Sciences,2003,66(4):614-656.
  • 8ILYAS I F,BESKALES G,SOLIMAN M A.A survey of top-k query processing techniques in relational database systems[J].ACM Computing Surveys,2008,40(4):Article No.11.
  • 9THEOBALD M,SCHENKEL R,WEIKUM G.Efficient and self-tuning incremental query expansion for top-k query processing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2005:242-249.
  • 10MILNE D,WITTEN I H.Learning to link with Wikipedia[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management.New York:ACM,2008:509-518.

同被引文献104

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部