期刊文献+

基于稳健最小二乘支持向量机的测深激光信号处理 被引量:7

Laser bathymetry waveform processing based on robust least square support vector machine
下载PDF
导出
摘要 针对浅海探测中激光回波噪声源多、信噪比低,传统非加权最小二乘支持向量机和加权最小二乘支持向量机对低信噪比信号滤波不足的问题,提出将稳健最小二乘法与加权最小二乘支持向量机相结合的滤波方法(HW-LSSVM)。首先采用强淘汰权函数计算先验权值、残差和均方误差,然后采用权函数模型计算最小二乘支持向量机的权值,最后通过迭代计算实现回波信号滤波。通过仿真实验结果表明,HW-LS-SVM方法较最小二乘支持向量机、贝叶斯最小二乘支持向量机和传统加权最小二乘支持向量机滤波效果更加稳健,在噪声率为45%的情况下,滤波效果较为理想,水面和水底回波提取正确率为100%;对实测4组深水区和4组浅水区数据滤波后提取的海水深度均与背景资料的深度吻合。由此表明,HW-LS-SVM方法具有更好的抗噪性,更适合于对信噪比低的测深激光信号的滤波处理。 The traditional nonweighted least squares Support Vector Machine( SVM) and weighted least square SVM have a few disadvantages of processing low Signal-to-Noise Ratio( SNR) laser echo in the field of lidar bathymetry,a filtering method named HW-LS-SVM was proposed by combining robust least square and weighted least square SVM. Firstly,strong prior weight function,residual error and mean square error were calculated by elimination weight function,then the weight of least square SVM was computed by weight function. Finally,the echo signal was filtered by iterative computation. The simulation results show that HW-LS-SVM algorithm is more robust than least square SVM,Bayes least square SVM and the traditional weighted least square SVM. The results were satisfactory when the noise rate reached to 45%,and the correct rate of the extracted water surface and bottom was 100%. The extracted water depths from 4 groups of laser echoes in deep area and 4 groups in shallow area all agree with the background data. The proposed method has better anti-noise performance and is more suitable for the filtering processing of the low SNR lidar bathymetry signal.
出处 《计算机应用》 CSCD 北大核心 2016年第4期1173-1178,共6页 journal of Computer Applications
基金 国家863计划项目(2014AA7042011)~~
关键词 支持向量机 稳健最小二乘 激光测深 高崩溃污染率 权函数 Support Vector Machine(SVM) robust least square laser bathymetry high breakdown contamination rate weight function
  • 相关文献

参考文献23

  • 1MALLET C,BRETAR F.Full-waveform topographic lidar:state-of-the-art[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,64(1):1-16.
  • 2HOFTON M A,MINSTER J B,BLAIR J B.Decomposition of laser altimeter waveforms[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1989-1996.
  • 3WAGNER W,ULLRICH A,DUCIC V,et al.Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J].ISPRS Journal of Photogrammetry and Remote Sensing,2005,60(2):100-112.
  • 4JUTZI B,STILLA U.Range determination with waveform recording laser systems using a Wiener filter[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(2):95-107.
  • 5RONCAT A,BERGAUER G,PFEIFER N.B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(4):418-428.
  • 6BELINA F,LRVING J,ERNST J,et al.Analysis of an iterative deconvolution approach for estimating the source wavelet during waveform inversion of crosshole georadar data[J].Journal of Applied Geophysics,2012,78:20-30.
  • 7WAGNER W,RONCAT A,MELZER T,et al.Waveform analysis techniques in airborne laser scanning[J].International Archives of Photogrammetry and Remote Sensing,2007,36(3):413-418.
  • 8BRETAR F,CHAUVE A,MALLET C,et al.Managing full waveform lidar data:a challenging task for the forthcoming years[EB/OL].[2015-02-10].http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/69.pdf.
  • 9WANG C,LI Q,LIU Y,et al.A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,101:22-35.
  • 10邓小英,刘涛,罗勇.Ricker子波核最小二乘支持向量回归滤波方法的稳健性研究[J].地球物理学报,2011,54(3):845-853. 被引量:6

二级参考文献54

  • 1冯瑞,宋春林,张艳珠,邵惠鹤.基于支持向量机与RBF神经网络的软测量模型比较研究[J].上海交通大学学报,2003,37(z1):122-125. 被引量:16
  • 2CHEN GuohuaHong Kong University of Science & TechnologyLIU XiangdongChina Agriculture UniversityQU YixinBeijing University of Chemical Technology.Guest Editorial[J].Chinese Journal of Chemical Engineering,2004,12(6). 被引量:1
  • 3李景叶,陈小宏,郝振江,芮振华.多波时移地震AVO反演研究[J].地球物理学报,2005,48(4):902-908. 被引量:64
  • 4蒋鸿亮,陈湛文,陈小宏.高分辨率AVO反演技术研究[J].地球物理学进展,2006,21(2):478-482. 被引量:33
  • 5杨宝俊.勘探地震学导论(上).长春:吉林科学技术出版社,1990.
  • 6Mercer J. Functions of positive and negative type and their connection with the theory of integral equations.Philosophical Transations of the Royal Society of London Series A.1909, 209: 415-446.
  • 7Aronszajn N. Theory of reproducing kernels.Transactions of the American Mathematical Society.1950, 68(3): 337-404.
  • 8Aizerman A, Braverman E M, Rozoner L I. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 1964, 25:821-837.
  • 9Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 10Sonnenburg S, Ratsch G, Schafer C, et al. Large scale multiple kernel learning. Journal of Machine Learning Research, 2006,7:1531-1565.

共引文献121

同被引文献94

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部