期刊文献+

A Bootstrapping-based Method to Automatically Identify Data-usage Statements in Publications 被引量:2

A Bootstrapping-based Method to Automatically Identify Data-usage Statements in Publications
下载PDF
导出
摘要 Purpose: Our study proposes a bootstrapping-based method to automatically extract data- usage statements from academic texts. Design/methodology/approach: The method for data-usage statements extraction starts with seed entities and iteratively learns patterns and data-usage statements from unlabeled text. In each iteration, new patterns are constructed and added to the pattern list based on their calculated score. Three seed-selection strategies are also proposed in this paper. Findings: The performance of the method is verified by means of experiments on real data collected from computer science journals. The results show that the method can achieve satisfactory performance regarding precision of extraction and extensibility of obtained patterns. Research limitations: While the triple representation of sentences is effective and efficient for extracting data-usage statements, it is unable to handle complex sentences. Additional features that can address complex sentences should thus be explored in the future. Practical implications: Data-usage statements extraction is beneficial for data-repository construction and facilitates research on data-usage tracking, dataset-based scholar search, and dataset evaluation. Originality/value: To the best of our knowledge, this paper is among the first to address the important task of automatically extracting data-usage statements from real data. Purpose: Our study proposes a bootstrapping-based method to automatically extract data- usage statements from academic texts. Design/methodology/approach: The method for data-usage statements extraction starts with seed entities and iteratively learns patterns and data-usage statements from unlabeled text. In each iteration, new patterns are constructed and added to the pattern list based on their calculated score. Three seed-selection strategies are also proposed in this paper. Findings: The performance of the method is verified by means of experiments on real data collected from computer science journals. The results show that the method can achieve satisfactory performance regarding precision of extraction and extensibility of obtained patterns. Research limitations: While the triple representation of sentences is effective and efficient for extracting data-usage statements, it is unable to handle complex sentences. Additional features that can address complex sentences should thus be explored in the future. Practical implications: Data-usage statements extraction is beneficial for data-repository construction and facilitates research on data-usage tracking, dataset-based scholar search, and dataset evaluation. Originality/value: To the best of our knowledge, this paper is among the first to address the important task of automatically extracting data-usage statements from real data.
出处 《Journal of Data and Information Science》 2016年第1期69-85,共17页 数据与情报科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No.:71473183)
关键词 Data-usage statements extraction Information extraction BOOTSTRAPPING Unsupervised learning Academic text-mining Data-usage statements extraction Information extraction Bootstrapping Unsupervised learning Academic text-mining
  • 相关文献

同被引文献22

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部