期刊文献+

Nodeless superconducting gaps in Ca10(Pt(4-δ)As8)((Fe(1-x)Ptx)2As2)5 probed by quasiparticle heat transport

Nodeless superconducting gaps in Ca_(10)(Pt_(4-δ)As_8)((Fe_(1-x)Pt_x)_2As_2)_5 probed by quasiparticle heat transport
原文传递
导出
摘要 The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt4δAs8)((Fe1-xPtx)2As2)5 single crystal ("10-4-8", Tc = 22 K) was measured down to 80 inK. In a zero field, the residual linear term ro/T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, r0/T increases rapidly, which mimics the multiband superconductor NbSe2 and LuNi2B2C with highly anisotropic gap. Such a field dependence of K0/T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt3As8)((Fe1-xPtx)zAs2)5 ("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure. The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt_(4-δ)As_8)((Fe_(1-x)Pt_x)_2As_2)_5 single crystal("10-4-8", T c= 22 K) was measured down to 80 m K. In a zero field, the residual linear term κ_0/T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, κ_0/T increases rapidly, which mimics the multiband superconductor Nb Se_2 and Lu Ni_2B_2 C with highly anisotropic gap. Such a field dependence of κ_0/T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt_(4-δ)As_8)((Fe_(1-x)Pt_x)_2As_2)_5("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第5期16-20,共5页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Basic Research Program of China(Grant No.2012CB821402) the National Natural Science Foundation of China(Grant Nos.11422429 and 91421101) the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning the Science and Technology Commission of Shanghai Municipality of China(Grant No.15XD1500200)
关键词 iron-based superconductors thermal conductivity superconducting gap structure 超导能隙 探测粒子 FEL 热传输 各向异性 热传导性 穿透深度 能隙结构
  • 相关文献

参考文献28

  • 1Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
  • 2M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
  • 3D. R. Parker, M. J. E Smith, T. Lancaster, A. J. Steele, I. Franke, E J. Baker, F. L. Pratt, M. J. Pitcher, S. J. Blundell, and S. J. Clarke, Phys. Rev. Lett. 104, 057007 (2010).
  • 4B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, D. Mandrus, and Y. Mozharivskyj, Phys. Rev. B 79, 094521 (2009).
  • 5E J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).
  • 6F. Wang, and D. H. Lee, Science 332, 200 (2011).
  • 7C. L6hnert, T. Stfirzer, M. Tegel, R. Frankovsky, G. Friederichs, and D. Johrendt, Angew. Chem. Int. Ed. 50, 9195 (2011).
  • 8N. Ni, J. M. Allred, B. C. Chan, and R. J. Cava, Proc. Natl. Acad. Sei. USA 108, El019 (2011).
  • 9S. Kakiya, K. Kudo, Y. Nishikubo, K. Oku, E. Nishibori, H. Sawa, T. Yamamoto, T. Nozaka, and M. Nohara, J. Phys. Soe. Jpn. 80, 093704 (2011).
  • 10Z. J. Xiang, X. G. Luo, J. J. Ying, X. E Wang, Y. J. Yah, A. F. Wang, P. Cheng, G. J. Ye, and X. H. Chen, Phys. Rev. B 85, 224527 (2012).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部