摘要
The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt4δAs8)((Fe1-xPtx)2As2)5 single crystal ("10-4-8", Tc = 22 K) was measured down to 80 inK. In a zero field, the residual linear term ro/T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, r0/T increases rapidly, which mimics the multiband superconductor NbSe2 and LuNi2B2C with highly anisotropic gap. Such a field dependence of K0/T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt3As8)((Fe1-xPtx)zAs2)5 ("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure.
The in-plane thermal conductivity of the iron-based superconductor Ca10(Pt_(4-δ)As_8)((Fe_(1-x)Pt_x)_2As_2)_5 single crystal("10-4-8", T c= 22 K) was measured down to 80 m K. In a zero field, the residual linear term κ_0/T is negligible, suggesting the nodeless superconducting gaps in this multiband compound. In the magnetic fields, κ_0/T increases rapidly, which mimics the multiband superconductor Nb Se_2 and Lu Ni_2B_2 C with highly anisotropic gap. Such a field dependence of κ_0/T is an evidence for the multiple superconducting gaps with quite different magnitudes or highly anisotropic gap. Compared with the London penetration depth results of the Ca10(Pt_(4-δ)As_8)((Fe_(1-x)Pt_x)_2As_2)_5("10-3-8") compound, the 10-4-8 and 10-3-8 compounds may have a similar superconducting gap structure.
基金
supported by the National Basic Research Program of China(Grant No.2012CB821402)
the National Natural Science Foundation of China(Grant Nos.11422429 and 91421101)
the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
the Science and Technology Commission of Shanghai Municipality of China(Grant No.15XD1500200)