期刊文献+

A characterization of Burniat surfaces with K^2 = 4 and of non nodal type

A characterization of Burniat surfaces with K^2 = 4 and of non nodal type
原文传递
导出
摘要 Let S be a minimal surface of general type with pg(S) = 0 and K_S^2= 4. Assume the bicanonical map ψ of S is a morphism of degree 4 such that the image of ψ is smooth. Then we prove that the surface S is a Burniat surface with K^2= 4 and of non nodal type. Let S be a minimal surface of general type with pg(S) = 0 and K_S^2= 4. Assume the bicanonical map ψ of S is a morphism of degree 4 such that the image of ψ is smooth. Then we prove that the surface S is a Burniat surface with K^2= 4 and of non nodal type.
作者 SHIN YongJoo
出处 《Science China Mathematics》 SCIE CSCD 2016年第5期839-848,共10页 中国科学:数学(英文版)
基金 supported by Shanghai Center for Mathematical Sciences
关键词 bicanonical map Burniat surface surface of general type 表面表征 结节 极小曲面 图像平滑
  • 相关文献

参考文献21

  • 1Mendes Lopes M, Pardini R. The degree of the bicanonical map of a surface with pg = 0. Proc Amer Math Soc, 2007, 135:1279-1282.
  • 2Mendes Lopes M, Pardini R. Numerical Campedelli surfaces with fundamental group of order 9. J Eur Math Soc, 2008, 10:457-476.
  • 3Miyaoka Y. The maximal number of quotient singularities on surfaces with given numerical invariants. Math Ann, 1984, 268:159-171.
  • 4Nagata M. On rational surfaces I: Irreducible curves of arithmetic genus 0 or 1. Mem Coil Sci Univ Kyoto Ser A Math, 1960, 32:351 370.
  • 5Pardini R. Abelian covers of algebraic varieties. J Reine Angew Math, 1991, 417:191 213.
  • 6Pardini R. The classification of double planes of general type with K2 : 8 and pg = 0. J Algebra, 2003, 259:95-118.
  • 7Reider I. Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann of Math (2), 1988, 127:309-316.
  • 8Xiao G. Finitude de l'application bicanonique des surfaces de type g~n@ral. Bull Soc Math France, 1985, 113:23 51.
  • 9Zhang L. Characterization of a class of surfaces with pg = 0 and /~2 = 5 by their bicanonical maps. Manuscripta Math. 2011. 135:165 181.
  • 10Barth W, Peters C, Van de Ven A. Compact Complex Surfaces. New York: Springer-Verlag, 1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部