期刊文献+

Applications of balanced pairs 被引量:3

Applications of balanced pairs
原文传递
导出
摘要 Let(X, Y) be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to(X, Y), and then give some equivalent characterizations when a relative cotorsion pair is hereditary or perfect. We prove that if the X-resolution dimension of Y(resp. Y-coresolution dimension of X)is finite, then the bounded homotopy category of Y(resp. X) is contained in that of X(resp. Y). As a consequence, we get that the right X-singularity category coincides with the left Y-singularity category if the X-resolution dimension of Y and the Y-coresolution dimension of X are finite. Let(X, Y) be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to(X, Y), and then give some equivalent characterizations when a relative cotorsion pair is hereditary or perfect. We prove that if the X-resolution dimension of Y(resp. Y-coresolution dimension of X)is finite, then the bounded homotopy category of Y(resp. X) is contained in that of X(resp. Y). As a consequence, we get that the right X-singularity category coincides with the left Y-singularity category if the X-resolution dimension of Y and the Y-coresolution dimension of X are finite.
出处 《Science China Mathematics》 SCIE CSCD 2016年第5期861-874,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11171142)
关键词 balanced pairs relative cotorsion pairs relative derived categories relative singularity categories relative(co)resolution dimension 平衡 Abel范畴 应用 等价刻画 分辨率 尺寸 同伦 有界
  • 相关文献

参考文献21

  • 1Chen X W, Zhang P. Quotient triangulated categories. Manuscripta Math, 2007, 123:16~183.
  • 2Christensen L W, l~ankild A, Holm H. On Gorenstein projective, injeetive and fiat dimensions--a functorial description with applications. J Algebra, 2006, 302:231-27"9.
  • 3Enochs E E, Jenda O M G. Balanced functors applied to modules. J Algebra, 1985, 92:303 310.
  • 4Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000 Enochs E E, Jenda O M G, Torrecillas B, et al. Torsion theory relative to Ext. Http://citeseerx.ist.psu.edu/viewdoc/ summary?doi= 10.1.1.31.8694, 1998.
  • 5Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323:2041-2057.
  • 6Happel D. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite-Dimensional Algebras. Progress in Mathematics, vol. 95. Basel: Birkh~iuser, 1991, 389-404.
  • 7Hovey M. Cotorsion pairs and model categories. In: Interactions Between Homotopy Theory and Algebra. Contemp Mathematics, vol. 436. Providence, RI: Amer Math Soc, 2007, 277-296.
  • 8Huang Z Y, Iyama O. Auslander-type conditions and cotorsion pairs. J Algebra, 2007, 318:93-110.
  • 9Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117-168.
  • 10Krause H, Solberg O. Applications of cotorsion pairs. J Lond Math Soc, 2003, 68:631-650.

同被引文献2

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部