期刊文献+

贝叶斯多模型分析方法的对比研究

Comparative Study on Bayesian Multimodel Analysis Methods
下载PDF
导出
摘要 多模型分析能够考虑模型本身存在的不确定性,在决策分析和风险评估中具有越来越重要的作用。对具有严谨统计分析理论基础的贝叶斯模型平均法和极大似然贝叶斯多模型平均法做了详细介绍,并改进了传统极大似然贝叶斯多模型平均法不能考虑参数不确定性的不足,使极大似然贝叶斯多模型平均法对贝叶斯模型平均法近似得更为准确。地质统计多模型对地层渗透系数的预测分析结果表明,2种多模型分析方法在参数空间确定、模型后验权重和渗透系数预测方面都具有很好的一致性。极大似然贝叶斯多模型平均法能和水文学现有的参数估计方法很好结合,且计算量小。 Multimodel analysis plays more important role in decision-making and risk assessment in recent years due to its capability to take conceptual model uncertainty into account. Two commonly used multimodel analysis methods, Bayesian model averaging method and its maximum likelihood version, are introduced. The maximum likelihood Bayesian averaging method has been improved to take parameter uncertainty into account. These methods are applied to analyze the spatial distribution of log hydraulic conductivity. The results show that these two methods are consistent with each other in terms of identifying the parameter space, determining the posterior model weights and predicting the log hydraulic conductivity distribution. The maximum likelihood Bayesian averaging method can be incorporated with the well-developed inverse modeling methods in hydrogeological researches.
作者 薛亮 夏强
出处 《水力发电》 北大核心 2016年第4期31-35,40,共6页 Water Power
基金 国家自然科学基金资助项目(41402199 41502237) 中国石油大学(北京)引进人才科研启动基金项目(2462014YJRC038) 油气资源与探测国家重点实验室青年人才培育课题(PRP/indep-4-1409)
关键词 不确定性分析 贝叶斯模型平均法 极大似然估计 地质统计 uncertainty analysis Bayesian model averaging maximum likelihood estimation geostatistics
  • 相关文献

参考文献10

  • 1NEUMAN S. Maximum likeliimod Bayesian averaging of uncertain mod- el predictions[ J ]. Stochastic Environmental Research and Risk Assess- ment, 2003, 17(5): 291-305.
  • 2YE Ming, NEUMAN S P, MEYER P D. Maximum likelihood Bayes- ian averaging of spatial variability models in unsaturated fractured tuff [ J ]. Water Resources Research, 2004, 40 ( 5 ) : 1 - 17.
  • 3NOWAK W, De BARROS F P J, RUBIN Y. Bayesian geostatistieal design: Task-driven optimal site investigation when the geostatistical model is uncertain [ J ]. Water Resources Research, 2010, 46 (3) : 3535-3552.
  • 4XUE Liang, ZHANG Dongxiao. A multimodel data assimilation frame- work via the ensemble Kalman filter[ J]. Water Resources Research, 2014, 50(5) : 4197-4219.
  • 5XUE Liang, ZHANG Dongxiao, GUADAGNINI A. Multimodel Bayes- ian analysis of groundwater data worth[J]. Water Resources Research, 2014, 50(11): 8481-8496.
  • 6王慧亮,李叙勇,解莹.多模型方法在非点源污染负荷中的应用展望[J].水科学进展,2011,22(5):727-732. 被引量:17
  • 7BEVEN K, BINLEY A. The future of distributed models: model cali- bration and uncertainty prediction[J]. Hydrological processes, 1992, 6(3) : 279-298.
  • 8MONTANARI A. Large sample behaviors of the generalized likelihood uncertainty estimation(GLUE) in assessing the uncertainty of rainfall- runoff simulations [ J]. Water Resources Research, 2005, 41 ( 8 ) :8406-8419.
  • 9STEDINGER J R, VOGEL R M, LEE S U, et al. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method [ J ]. Water resources research, 2008, 44(12) : 6-23.
  • 10HOETING J A, MADIGAN D, RAFTERY A E, et al. Bayesian model averaging: a tutorial[ J ]. Statistical science, 1999, 14 (4) : 382-401.

二级参考文献34

  • 1王浩,严登华,贾仰文,胡东来,王凌河.现代水文水资源学科体系及研究前沿和热点问题[J].水科学进展,2010,21(4):479-489. 被引量:82
  • 2曾思育,杜鹏飞,陈吉宁.流域污染负荷模型的比较研究[J].水科学进展,2006,17(1):108-112. 被引量:22
  • 3程炯,林锡奎,吴志峰,刘平,陈志良.非点源污染模型研究进展[J].生态环境,2006,15(3):641-644. 被引量:21
  • 4LI X Y, WELLER D E, JORDAN T E. Watershed model calibration using muhi-objective optimization and multisite averaging [ J ]. Journal of Hydrology, 2010, 380 (3/4) : 277-288.
  • 5SHEN Z Y, LIAO Q, HONG Q. An overview of research on agricultural non-point source pollution modelling in China [ J]. Separation and Purification Technology, 2011. [ doi: 10. 1016/j. seppur. 2011.01. 018].
  • 6SHEN Z Y, HONG Q H, YU H. Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China[ J]. Science of the Total Environment, 2008, 405: 195-205.
  • 7HUANG J L, HONG H S. Comparative study of two models to simulate diffuse nitrogen and phosphorus pollution in a medium-sized watershed, southeast China[ J ]. Estuarine, Coastal and Shelf Science, 2010, 86 (3) : 387-394.
  • 8SOHRABI T M, SHIRMOHAMMADI A, MONTAS H. Uncertainty in non-point source pollution models and associated risks I J]. Environmental Forensics, 2002, 3 (2) : 179-189.
  • 9MAGILL DL. Optimal adaptive estimation of sampled stochastic process [ J]. Automatic Control, 1965, 10(4) : 434-439.
  • 10BATES J M, GRANGER C W J. The combination of forecasts [J]. Operational Research Society, 1969, 20(4) : 451-468.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部