期刊文献+

施主型杂质对单晶硅中少子衰减过程的影响

Influence of the Donor Impurity on the Decay Process of Minority Carriers in Monocrystalline Silicon
下载PDF
导出
摘要 单晶硅材料内少子的衰减过程可以反映出其内部杂质和缺陷的信息。针对施主型杂质是单晶硅内多数杂质呈现的基本形态,首先在小注入条件下分析了p型单晶硅内少子衰减的基本机制,然后根据施主型杂质密度、俘获截面和能级距导带底之间距离等参数的不同,重点讨论了存在施主型电子陷阱和复合中心时,太阳电池用p型单晶硅内少子衰减的基本规律。研究表明:存在施主型电子陷阱或复合中心时,p型单晶硅的少子衰减过程具有恒定的少子寿命,且杂质的密度N_T和俘获截面σ_n之积(N_T×σ_n)存在最小的影响阈值,N_T×σ_n值大于阈值的杂质和缺陷对少子衰减过程才具有重要的影响。 The decay process of minority carriers can reflect the information of defects and impurities in crystalline silicon materials. Because most of impurities in crystalline silicon take on a form of donor impurities,the basic mechanisms for the decay process of minority carriers in p type crystalline silicon was discussed under the low injection condition. And then based on the different parameters of donor electron traps and recombination centers,i. e. impurity density,the capture cross section and the energy difference between the impurity band and the bottom of conduction band, the rules for the decay process of minority carriers in the p type crystalline silicon used in solar cell were discussed in detail.The results show that with donor electron traps and recombination centers,the decay process of minority carriers in p type crystalline silicon has a constant lifetime of minority carriers. The product( N_T× σ_n)of impurity density( N_T) and cross section( σ_n) have a minimum threshold value and only if larger than the threshold value,defects or impurities can have an important influence on the decay process of minority carrier.
出处 《半导体技术》 CAS CSCD 北大核心 2016年第4期302-307,318,共7页 Semiconductor Technology
基金 国家自然科学基金资助项目(11304020) 辽宁省教育厅一般项目(L2012401)
关键词 单晶硅 少子 施主杂质 俘获截面 阈值 monocrystalline silicon minority carrier donor impurity capture cross section threshold value
  • 相关文献

参考文献14

  • 1WANG S, WEIL B D, LI Y, et al. Large-area free- standing ultrathin single-crystal silicon as processable ma- terials [J]. Nano Letters, 2013, 13 (9): 4393 - 4398.
  • 2FUYUKI T, KONDO H, YAMAZAKI T, et al. Photo- graphic surveying of minority carrier diffusion length in polycrystalline silicon ceils by electroluminescence [ J]. Applied Physics Letter, 2005, 86 (26): 262108-1- 262108-5.
  • 3GOGOLIN R, HARDER N P. Trapping behavior of shockley-read-hall recombination centers in silicon solar cells [ J]. Journal of Applied Physics, 2013, 114 (6) : 064504-1-064504-7.
  • 4DERBALI L, ZARROUG A, EZZAOUIA H. Minority carrier lifetime and efficiency improvement of multicrystal- line silicon solar cells by two-step process [ J]. Renewa- ble Energy, 2015, 77: 331-337.
  • 5MICHALE K, TOBIAS O, PIETRO A P, et al. The effect of sample edge recombination on the averaged injec- tion-dependent carrier lifetime in silicon [ J]. Journal of Applied Physics, 2012, 111 (5) : 054508-054520.
  • 6DRUMMOND P J, BHATIA D, RUZYLLO J. Measure- ment of effective carrier lifetime at the semiconductor-die- lectric interface by photoconductive decay (PCD) method [J]. Solid State Electronics, 2013, 81 (1): 130-134.
  • 7SCHULER N, ANGER S, DORNICH K, et al. Limita- tions in the accuracy of photoconductance-based lifetime measurements [ J ]. Solar Energy Materials & Solar Cells, 2012, 98: 245-252.
  • 8AHRENKIEL R K, JOHNSTON S W, KUCIAUSKAS D, et al. Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors [ J]. Journal of Applied Physics, 2014, 116 (21) : 214510.
  • 9LAUER K, LAADES A, I~BENSEE H, et al. Detailed analysis of the microwave-detected photoconductance de- cay in crystalline silicon [ J]. Journal of Applied Phy- sics, 2008, 104 (10): 104503.
  • 10KLEIN P B, MYERS-WARD R, LEW K K, et al. Recombination processes controlling the carrier lifetime in n4H-SiC epilayers with low Z1/2 concentrations [ J ]. Journal of Applied Physics, 2010, 108 (3) : 33713- 33723.

二级参考文献18

  • 1SMELSER N J, SWDBERG R. The Handbook of eco- nomic sociology [ M ].Second Edition. USA: Princeton University Press, 2010:120-125.
  • 2MICHAEL K, TOBIAS O, PIETRO A P, et. al. The effect of sample edge recombination on the averaged injec- tion-dependent carrier lifetime in silicon [ J]. Journal of Applied Physics, 2012, 111 (5): 054508-054520.
  • 3DRUMMOND P J, BHATIA D, RUZYLLO J. Measure- ment of effective carrier lifetime at the semiconductor-die- lectric interface by photoconductive decay (PCD) method [ J ]. Solid-State Electronics, 2013, 81 ( 1 ) : 130 - 134.
  • 4JEONG K, YEAN Y S, KYOON C. Effects of phos- phorus diffusion gettering on minority carrier lifetimes of single-crystalline, multi-crystalline and UMG silicon wa- fer [ J ]. Current Applied Physics, 2013, 13 (9) : 2103-2109.
  • 5LESZEK B, ALEKSY P. Modulated free-carrier absorp- tion in silicon a spectroscopy approach [ J]. Physica Sta- tus Solidi (B), 2015, 252 (6): 1311-1318.
  • 6MALIASKI M, PAWLAK M, CHROBAK A. Monitoring of amorfization of the oxygen implanted layers in silicon wafers using photothermal radiometry and modulated free carrier absorption methods [ J]. Journal of Applied Phy- sics: A, 2015, 118 (3): 1009-1015.
  • 7KLEIN P B, MYERS-WARD R, LEW K K. Recombi- nation processes controlling the carrier lifetime in n-4H- SiC epilayers with low Z1/2 concentrations [ J]. Journal of Applied Physics, 2010, 108 (3): 33713-1-33713-11.
  • 8PISARKIEWICZ T. Photodecay method in investigation of materials and photovoltaic structures [ J]. Opto-Elec- tronics Review, 2004, 12 (1): 33-40.
  • 9SAMESHIMA T, FURUKAWA J, NAKAMURA T. Photo induced minority carrier annihilation at crystalline silicon surface in metal oxide semiconductor structure [J]. Japanese Journal of Applied Physics, 2014, 53 (3): 301-312.
  • 10SCHRODER D K. Carrier lifetimes in silicon [J]. IEEETransactions on Electron Device, 1997, 44 (1): 187-195.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部