期刊文献+

新预条件下矩阵不同分裂的收敛性分析 被引量:1

The Convergence Analysis of the Different Matrix Splitting under the New Pre-condition
下载PDF
导出
摘要 近年来对于求解线性方程组的技术有了很大的发展,特别是预条件技术的出现使得解线性方程组的速度有了很大的提高,在预条件技术中最主要的是怎样去找一个合适的预条件子,本文提出了一个新的预条件子,不但证明了当线性方程组的Ax=b系数矩阵为非奇异的M-矩阵和H-矩阵时,在新预条件子作用下它们的收敛性,还得到了在新预条件下PSOR、PJOR等的收敛速度明显快于以往经典SOR、JOR迭代法,从而证明了本文提出的新预条件子的优越性. In recent years there is a great development in solving the linear equations, especially af- ter the introduction of the pre-condition matrix, and the linear method's convergence rate accelerates greatly. What is the most important in the pre-condition technology is how to find a suitable pre-condi- tion. In this paper we propose a new pre-condition matrix, and when the Ax=b coefficient matrix is nonsingular irreducible M-matrix and H-matrix respectively we discuss the convergence analysis of not only the pre-conditioned ,but also we prove their convergence results under the new pre-condition, and demonstrate the convergence rate of PSOR and PJOR is clearly much faster than that of the classical SOR and JOR method, which show the superiority of our new per-condition iterative method in this paper.
作者 张红锋
出处 《聊城大学学报(自然科学版)》 2016年第1期13-18,共6页 Journal of Liaocheng University:Natural Science Edition
基金 江苏省职业教育教学改革研究课题(ZYB104)
关键词 预条件矩阵 M-矩阵 SOR迭代法 JOR迭代法 收敛性 pre-condition matrix, M-matrix, the SOR iterative method, the JOR iterative method, convergence
  • 相关文献

参考文献1

二级参考文献4

  • 1Hiroshi Niki,Kyouji Harada,Munenori Morimoto,etc.The survey of preconditioners used for accelerating the rate of convergence in the Gauss -Seidel method[J].Journal of Computational and Applied Mathematics,2004,165 (5):587-600.
  • 2LI,WEN and SUN,W W.Modified Gauss-seidel methods and Jacobi methods for Z-matrices[J].Linear Algebra Appl.,2000,56 (3):233-240.
  • 3Berman,A and Plemmon,R J.Nonnegative atrices in the mathematical sciences[M].SIAM Press Philadelphia,1994.
  • 4孙丽英.解线性方程组的预条件迭代方法[J].高等学校计算数学学报,2002,24(2):155-162. 被引量:10

共引文献3

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部