期刊文献+

基于PU学习算法的文本分类研究与实现 被引量:1

下载PDF
导出
摘要 PU学习文本分类指的是从只包含一类的正例文档(P)和包含很多类别的未标记文档(U)建立文本分类器最终进行文本分类的问题,U包含正例和反例文档。两步策略是解决PU学习问题的一种最常用的方法。实际问题中,当正例P数量太少的时候,这种方法分类的效果并不好。为了解决P代表性不足的问题,文章提出了一种改进方法旨在解决PU学习问题中正例P数量较少的情况,在两步方法中的第二步不断扩大P的数量来提高分类器的效果,实验结果表明与以往方法结果对比,改进的方法 F值有将近30%的提高。
出处 《信息通信》 2016年第3期27-28,共2页 Information & Communications
基金 四川省科技计划项目(2012ZR0120)
  • 相关文献

参考文献5

  • 1富震.基于SVM主动学习技术的PU文本分类[J].计算技术与自动化,2014,33(1):127-131. 被引量:4
  • 2Yu,H.,Han,J.Chang,K.C.C:PEBL:Positive ExampleBased learning for web page classification using SVM.In:Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,pp,239{248.ACM(2002).
  • 3Yu,H.Zuo,W.Peng,T:A New PU Learning Algorithm for Text Classification.In:Proceedings of MICAI,pp.824-832(2005).
  • 4Liu,B.Dai,Y.Li,X.Lee,W.Yu,P:Building text classifiers using positive and unlabeled examples.In:Proceedings of the Third IEEE International Conference on Data Mining(ICDM-03).Melbourne,Florida,November 19-22(2003).
  • 5罗欣,夏德麟,晏蒲柳.基于词频差异的特征选取及改进的TF-IDF公式[J].计算机应用,2005,25(9):2031-2033. 被引量:55

二级参考文献17

  • 1CHANG CC, LIN CJ. LIBSVM - A Library for Support Vector Machines [ EB/OL]. http:∥www. csie. ntu. edu. tw/~cjlin/libsvm,2005 -02 -02.
  • 2YANG YM. An Evaluation of Statistical Approaches to Text Categorization[J]. Journal of Information Retrieval, 1999, 1 (1/2) .
  • 3LEWIS DD. Feature selection and feature extraction for text categorization[A] . Proceedings of Speech and Natural Language Workshop[C] . San Francsico: Morgan Kaufmann, February, 1992. 212- 217.
  • 4F. Denis, R. Gilleron, and M. Tommasi, Text classification from positive and unlabeled examples[J]. Conference on In formation Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), 2002.
  • 5Bing Liu, Wee Sun Lee, Philip S. Yu, Xiaoli Li. Partially supervised classification of text documents [J]. The Nine- teenth International Conference on Machine Learning (IC ML) ,2002,384-397.
  • 6Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, Philip S. Yu, Building Text Classifiers Using Positive and Unlabeled Ex amples[J]. Proceedings of the Third IEEE International Conference on Data Mining (ICDM) ,2003 : 179- 187.
  • 7Hwanjo Yu, Jiawei Han, Kevin Chen Chuan Chang, PE- BL: Positive example based learning for Web page classifica- tion using SVM. Proc. Eighth Int'l Conf[J]. Knowledge Discovery and Data Mining (KDD ' 02), 2002 : 239 - 248.
  • 8Larry M. Manevitz, MalikYousef, One Class SVMs for doc- ument elassification [J]. Journal of Machine Learning Re search, volume 2,2001 : 139- 154.
  • 9T. Joachims. Text categorization with support vechine ma- chine. Proc. 10th European Conf[J]. Machine Learning(EC- ML '98) ,1998:137-142.
  • 10Simon Tong, Daphne Koller, Support Vector Machine Active Learning with Applications to Text Classifieation[J]. Journal of Machine Learning Research, 2001 : 45- 66.

共引文献57

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部