期刊文献+

二维空间中具间接信号产出趋化模型解的整体存在性 被引量:2

Global Existence in the Two-Dimensional Chemotaxis Model with Indirect Signal Production
下载PDF
导出
摘要 考虑一个山松甲壳虫的扩散和聚集趋化模型,该模型由两个反应-扩散方程和一个常微分方程构成.证明了对任意的充分光滑的初始值该模型整体解的存在性,从而排除了解在有限时间爆破的可能性,讨论了该模型在初始细胞质量适当小的假设下整体解的有界性. A chemotaxis model describing the diffusion and aggregation of the Mountain Pine Beetle is considered.The model consists of two reaction-diffusion equations and an ordinary differential equation.It is shown that the model admits global solution for arbitrarily sufficiently smooth initial data,which excludes the possibility of finite-time blow-up.The boundedness of solutions is asserted whenever the initial cell mass is appropriately small.
作者 刘冬梅
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期137-144,共8页 Journal of Donghua University(Natural Science)
关键词 趋化性 间接信号产出 整体存在性 有界性 chemotaxis indirect signal production global existence boundedness
  • 相关文献

参考文献10

  • 1KELLER E F,SEGEL L A.Initation of slime mold aggregation viewed as an instability[J].J Theor Biol,1970,26(3):399-415.
  • 2HORSTMANN D.From 1970until present:The Keller-Segel model in chemotaxis and its consequences[J].Jahresber Der Deutsch Math-Verein,2003,105(3):103-165.
  • 3HILLEN T,PAINTER K.A usersguide to PDE models for chemotaxis[J].J Math Biol,2009,58(1/2):183-217.
  • 4OSAKI K,YAGI A.Finite dimensional attractors for onedimensional Keller-Segel equations[J].Funkcial Ekvac,2001,44(3):441-469.
  • 5NAGAI T,SENBA T,YOSHIDA K.Application of the Trudinger-Moser inequality to aparabolic system of chemotaxis[J].Funkcial Ekvac Ser Int,1997,40(3):411-433.
  • 6NAGAI T.Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains[J].J Inequal Appl,2001,6(1):37-55.
  • 7WINKLER M.Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system[J].J Math Pures Appl,2013,100(5):748-767.
  • 8STROHM S,TYSON R C,POWELL J A.Pattern formation in a model for Mountain Pine Beetle dispersal:Linking model predictions to data[J].Bull Math Biol,2013,75(10):1778-1797.
  • 9HORSTMANN D,WINKLER M.Boundedness vs.blow-up in a chemotaxis system[J].J Differential Equations,2005,215(1):52-107.
  • 10TAO Y S,WINKLER M.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].J Differential Equations,2012,252(1):692-715.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部