摘要
考虑一个山松甲壳虫的扩散和聚集趋化模型,该模型由两个反应-扩散方程和一个常微分方程构成.证明了对任意的充分光滑的初始值该模型整体解的存在性,从而排除了解在有限时间爆破的可能性,讨论了该模型在初始细胞质量适当小的假设下整体解的有界性.
A chemotaxis model describing the diffusion and aggregation of the Mountain Pine Beetle is considered.The model consists of two reaction-diffusion equations and an ordinary differential equation.It is shown that the model admits global solution for arbitrarily sufficiently smooth initial data,which excludes the possibility of finite-time blow-up.The boundedness of solutions is asserted whenever the initial cell mass is appropriately small.
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第1期137-144,共8页
Journal of Donghua University(Natural Science)
关键词
趋化性
间接信号产出
整体存在性
有界性
chemotaxis
indirect signal production
global existence
boundedness