期刊文献+

基于随机区间损益市场模型的未定权益无差异定价

Indifference Prices of Contingent Claims in a Market of Securities with Random Interval Payoffs
下载PDF
导出
摘要 基于加权期望效用最大化,给出了有随机区间损益未定权益的无差异买入价和卖出价的定义,讨论了两种无差异价格的存在性及其性质.通过一个算例,利用二分法得到了简单的二叉树模型下的无差异价格. Based on weighted expected utility maximization,definitions of indifference bid and ask prices to a contingent claim with interval payoff are proposed.Existence and properties of two prices are discussed.Applying the method of bisection,a simple binomial tree model is given as an example to calculate indifference prices.
作者 尤苏蓉 魏康
机构地区 东华大学理学院
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期145-151,共7页 Journal of Donghua University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目
关键词 未定权益 随机区间 期望效用 无差异定价 contingent claim random interval expected utility indifference pricing
  • 相关文献

参考文献15

  • 1HULL J.Options,futures and other derivatives[M].7th edition.New-Jersy:Prentice-Hall,2008.
  • 2KARATZAS I,KOU S.On the pricing of contingent claims under constraints[J].Annals of Applied Probability,1996,6(2):321-369.
  • 3CARMONA R.Indifference pricing:Theory and applications[M].New-Jersy:Princeton University Press,2009.
  • 4MUSIELA M,ZARIPHOPOULOU T.An example of indifference prices under exponential preferences[J].Finance and Stochastics,2004,8(2):229-239.
  • 5MALAMUD S,TRUBOWITZ E,WUTHRICH M.Indifference pricing for CRRA utilities[J].Mathematics and Financial Economics,2013,7(3):247-280.
  • 6STOJANOVIC S.Any-utility neutral and indifference pricing and hedging[J].Risk and Decision Analysis,2013,4(2):103-118.
  • 7RIGOTTI L,SHANNON C.Uncertainty and risk in financial markets[J].Econometrica,2005,73(1):203-243.
  • 8HUANG X X.Minimax mean-variance models for fuzzy portfolio selection[J].Soft Computing-A Fusion of Foundations,Methodologies and Applications,2010,15(2):251-260.
  • 9YU S,HUARNG K,LI M.A novel option pricing model via fuzzy binomial decision tree[J].International Journal of Innovative Computing,Information and Control,2011,7(2):709-718.
  • 10MUZZIOLI S,TORRICELLI C.A multiperiod binomial model for pricing options in a vague world[J].Journal of Economic Dynamics&Control,2004,28(5):861-887.

二级参考文献18

  • 1YOU Su-rong, LE Jia-jin, DING Xiao-dong. Pricing a contingent claim with random interval or fuzzy random payoff in one-period setting[J]. Computers and Mathematics with Applications, 2008, 56(8): 1905- 1917.
  • 2KRAMKOV D, SCHACHERMAYER W. The asymptotic elasticity of utility functions and optimal invest- ment in incomplete markets[J]. Ann Appl Probab, 1999, 3(9): 904-950.
  • 3SCHACHERMAYER W. Optimal Investment in Incomplete Financial Markets, Mathematical Finance- Bachelier Congress[M]. Berlin: Springer Finance, 2002: 427-462.
  • 4ANDREA A, PAOLO P. Utility based pricing of contingent claims in incomplete markets[J]. Applied Math- ematical Finance, 2000, 9: 241-260.
  • 5SYDSAETER K, HAMMOND P. Essential Mathematics for Economic Analysis[M]. New Jersy: Prentice Hall, 2008.
  • 6Hull J C. Options, Futures and Other Derivatives[M]. 7th ed. New-Jersy: Prentice-Hail, 2008.
  • 7Karatzas I, Kou S G. On the Pricing of Contingent Claims under Constraints[ J]. The Annals of Applied Probability, 1996, 6 (2) : 321-369.
  • 8Chen A, Su X. Knightian Uncertainty and Insurance Regulation Decision[ J ]. Decisions in Economics and Finance, 2009, 32 (1) : 13-33.
  • 9Huang X X. Minimax Mean-Variance Models for Fuzzy Portfolio Selection [ J ]. Soft Computing--a Fusion of Foundations, Methodologies and Applications, 2010, 15(2) : 251-260.
  • 10Yu S E S, Huamg K H, Li M Y L, et al. A Novel Option Pricing Model via Fuzzy Binomial Decition Tree [ J ]. International Journal of Innovative Computing, Information and Control, 2011, 7(2) : 709-718.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部