期刊文献+

n_(Fe^(3+))/n_(Sr^(2+))和n_(OH^-)/n_(NO^-)对锶铁氧体纳米片结构及磁性能的影响 被引量:1

Effect of n_(Fe^(3+))/n_(Sr^(2+)) and n_(OH^-)/n_(NO^-) Molar Ratios on Microstructure and Magnetic Properties of Strontium Ferrite Nanosheets
下载PDF
导出
摘要 采用改进的水热法成功合成了单分散的纯相锶铁氧体纳米片。借助DLS、XRD、FTIR、SEM、EDS和VSM等分析测试手段对SrFe_(12)O_(19)铁氧体粉体的粒度、结构、形貌和磁性能进行表征。研究结果表明,在240℃保温5 h,物质的量之比n_(Fe^(3+))/n_(Sr^(2+))(R_(F/S))和n_(OH^-)/n_(NO^-)(R_(O/N))分别为5和2时,所得产物为单分散的纯相六角SrFe_(12)O_(19)铁氧体纳米片。随着R_(F/S)和R_(O/N)的变化,合成样品中有少量SrCO_3和Fe_2O_3杂相存在,这主要与反应条件和离子比例有关。磁性能测试结果显示,所得纯相的六角SrF_(12)O_(19)铁氧体纳米片具有优异的磁性能,其饱和磁化强度和矫顽力分别达到60.91 emu·g^(-1)和94.83 kA·m^(-1),使其在医疗、催化和生物等高技术领域具有潜在的应用。 Single-phase Strontium ferrite(SrFe12O19) nanosheets with good dispersivity were successfully synthesized by the modified hydrothermal method. The strontium ferrite nanosheets were characterized by DLS,XRD, FTIR, SEM, EDS and VSM. Results shown that when the RF/S and RO/N were equal to 5 and 2, respectively,pure phase monodisperse hexaferrite SrFe12O19nanosheets could be obtained at 240 ℃ for 5 hours. However,SrCO3 and Fe2O3 secondary phases could be observed with RF/S and RO/N, which was mainly attribute to the reaction conditions and ion ratio. Magnetic properties results indicated that the pure phase hexaferrite SrFe12O19 nanosheets shown excellent magnetic properties, the maximum saturation magnetization and coercive was up to60.91 emu·g^-1and 94.83 kA ·m^-1, respectively. These results making SrM ferrite particles have the potential applications in medical, catalyst and biology field.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2016年第4期655-661,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51202091) 江苏省自然科学基金(No.BK20141300) 中国博士后科学基金(No.2013M541612)资助项目
关键词 锶铁氧体 水热法 单分散 磁性能 strontium ferrite hydrothermal method monodisperse magnetic property
  • 相关文献

参考文献21

  • 1Jamalian M. J. Magn. Magn. Mater., 2015,378:217-220.
  • 2Somana V V, Nanotib V M, Kulkarni D K. Ceram. Int., 2013,39:5713-5723.
  • 3Fu W Y, Yang H B, Yu Q J, et al. Mater. Lett., 2007,61:2187- 2190.
  • 4Ashiq M N, Iqbal M J, Gul I H. J. Mogn. Magn. Mater., 2011,323:259-263.
  • 5Rashid A U, Southerm P, Darr J A, et al. J. Magn. Magn. Mater., 2013,344:134-139.
  • 6Abd Aziz A, Harng Yau Y, Puma G Li, et al. J. Chem. Eng., 2014,235:264-274.
  • 7Zaitsev D D, Kasin P E, Tretyakov Y D, et al. Inorg. Mater., 2004,40(8):881-887.
  • 8LIQiao-Ling(李巧玲),WANGYong-Fei(王永飞),YEYun(叶云),etal.无机化学学报,2008,12(24):1989-1993.
  • 9LIUMeng-Qiu(刘梦秋),YANGYan(杨艳),SUNKe(孙科),etal.人工晶体学报,2015,44(6):1485-1489.
  • 10Park J, Hong Y K, Kim S G, et al. J. Magn. Magn. Mater., 2014,355:1-6.

二级参考文献17

  • 1Yang, X. F.; Li, Q. L.; Zhao, J. X.; Li, B. D.; Wang, Y. F. J. Alloy. Compd. 2009, 475, 312.
  • 2Arkom, K.; Ali, G.; Liu, X. X.; Akimitsu, M. Thin Solid Films 2010, 518, 7059.
  • 3Wang, Y. F.; Li, Q. L.; Zhang, C. R.; Li, B. D. J. Magn. Magn. Mater. 20119, 321, 3368.
  • 4Mohammed, A. A.; Krishnan, V.; Bo, T. Nanoscale Res. Lett. 2011, 6, 375.
  • 5Xia, Q.; Wang, H. C.; Miao, Z. Y.; Wang, X. S.; Fang, Y. X.; Chen, Q.; Shao, X. G. Talanta 2011, 84, 673.
  • 6Li, C. J.; Wang, J. N. Mater. Lett. 2010, 64, 586.
  • 7Shen, X. Q.; Liu, M. Q.; Song, F. Z.; Meng, X. F. J. Sol-Gel. Sci. Technol. 2010, 53, 448.
  • 8Fang, Z. B.; Yan, Z. J.; Tan, Y. S.; Liu, X. Q.; Wang, Y. Y. Appl. Surf. Sci. 2005, 241,303.
  • 9Morel, A.; Le Breton, J. M.; Kreisel, J.; Wiesinger, G.; Kools, F.; Tenaud, P. ,I. Magn. Magn. Mater. 20112, 242-245, 1405.
  • 10Lechevallier, L.; Le Breton, J. M.; Wang, J. F.; Harris, I. R. J.. Phys. -Condens. Mat. 2004, 16, 5359.

共引文献12

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部