期刊文献+

高锰钢上等离子熔覆Ni60A镍基合金的温度场模拟 被引量:3

Numerical simulation of temperature field for plasma cladding of Ni60A nickel-based superalloy on high-manganese
下载PDF
导出
摘要 运用ANSYS有限元分析软件对Mn13高锰钢基体上单道等离子熔覆Ni60A镍基合金过程的温度场进行了数值模拟分析,并通过对比模拟与试验所得熔池数据来验证模型的可靠性。采用扫描电镜、X射线衍射仪、显微硬度计、材料表面性能综合测试仪对熔覆层显微组织、物相、显微硬度、摩擦磨损性能进行了分析。在不同熔覆功率和扫描速率下,通过对基体表面选定节点的最高温度、稀释率、熔深、熔宽和热影响区深度的综合对比,得出等离子熔覆镍基合金最佳工艺参数为:熔覆功率2.0 k W,扫描速率150 mm/min。熔覆层组织晶粒细小,从外到里依次为细小等轴晶、树枝晶和胞状晶。熔覆处理后高锰钢的显微硬度和耐磨性均得到显著提高。 The temperature field during single-track plasma cladding of Ni60 A nickel-based superalloy on Mn13 high-manganese steel substrate was numerically simulated by ANSYS, a finite element analysis software. The reliability of the model was verified by comparing the calculated and measured results about the dimensions of molten pool. The microstructure, phase composition, microhardness and tribological properties of cladding layer were characterized by scanning electron microscope, X-ray diffractometer, microhardness meter, and material surface comprehensive performance tester. The highest temperature of selected node at substrate surface, dilution rate, depth and width of molten pool, and depth of heat-affected zone were compared under different plasma arc powers and scan rate. The optimal cladding parameters were obtained as follows: plasma arc power 2.0 k W and scan rate 150 mm/min. The microstructure of cladding layer is characterized by small grains which are equiaxed, dendritic and cellular from outside to inside successively. The clad high-manganese steel has improved microhardness and wear resistance.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2016年第6期325-330,339,共6页 Electroplating & Finishing
关键词 高锰钢 镍基高温合金 等离子熔覆 温度场 数值模拟 显微组织 显微硬度 high-manganese steel nickel-based superalloy plasma cladding temperature field numerical simulation microstructure microhardness
  • 相关文献

参考文献9

二级参考文献128

共引文献99

同被引文献17

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部