期刊文献+

含弱界面结构断裂分析中辛方法

A symplectic method for fracture analysis of structure with weak interface
下载PDF
导出
摘要 基于哈密顿体系,提出了一种分析含弱界面弹性材料断裂问题的辛方法.通过引入对偶变量,建立基本问题的哈密顿体系.在该体系下,问题的解可被辛本征解的级数形式所表示.利用辛本征解之间的辛共轭正交关系,以及裂纹面条件、弱界面条件和结构外边界条件,可确定辛本征解级数的待定系数,从而得到问题的解.这样,可以获得Ⅰ型和Ⅱ型广义应力强度因子解析表达式.数值结果揭示了各种边界条件对应力强度因子的影响,同时也表明该方法对复杂的混合边界条件问题更有效. Based on Hamiltonian system,a symplectic method for analyzing the fracture problem of weak interface between two elastic media is presented.By introducing the dual variables,the Hamiltonian system is constructed,then the solution of the problem can be represented by series form of the symplectic eigensolutions.By means of the symplectic adjoint orthogonal relationship between symplectic eigensolutions,together with crack surface conditions,weak interfacial conditions and external boundary conditions of structure,the undetermined coefficients of the symplectic series can be determined.Therefore,the solution is obtained.In this way,the generalized stress intensity factors of ModeⅠand ModeⅡare expressed analytically.The numerical results reveal the influence of various boundary conditions on the stress intensity factors,and also show that the method is more effective for complex mixed boundary conditions.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第2期111-117,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(11372070 11302042) "九七三"国家重点基础研究发展计划资助项目(2014CB046803) 中央高校基本科研业务费专项资金资助项目(DUT14LK41 DUT14RC(4)39)
关键词 哈密顿体系 辛方法 应力强度因子 弱界面 Hamiltonian system symplectic method stress intensity factor weak interface
  • 相关文献

参考文献12

  • 1ZHONG Xian-ci, LI Xian-fang, Lee Kang-yong. Analysis of a mode-I crack perpendicular to an imperfect interface [J 1. International Journal of Solids and Structures, 2009, 46(6) :1456-1463.
  • 2Chen W Q, Lee K Y. Exact solution of angle-ply piezoelectric laminates in cylindrical bending with intedacial imperfections [J]. Composite Structures, 2004, 65(3-4) :329-337.
  • 3LI Yong-dong, Lee Kang-yong. The shielding effect of the imperfect interface on a mode III permeable crack in a layered piezoelectric sensor E J "1. Engineering Fracture Mechanics, 2009, 76 (7) : 876- 883.
  • 4刘承斌,吕朝锋.具有弱界面特性叠层压电球壳的自由振动[J].固体力学学报,2012,33(3):317-324. 被引量:2
  • 5但敏.Hamilton体系下层合板弱粘接模型的应用[J].应用数学和力学,2013,34(1):72-84. 被引量:1
  • 6WANG Xue, Ang Whye-teong, FAN Hui. Micro- mechanics models for an imperfect interface under anti-plane shear load: Hypersingular integral formulations [ J 1. Engineering Analysis with Boundary Elements, 2012, 36(12) : 1856-1864.
  • 7薛雁,刘金喜.反平面变形下弱界面压电夹层结构的圣维南端部效应[J].工程力学,2013,30(6):41-46. 被引量:2
  • 8ZHOU Zhen-huan, XU Xin-sheng, Leung A Y T, et al. Stress intensity factors and T-stress for an edge interface crack by symplectic expansion [J]. Engineering Fracture Mechanics, 2013, i02: 334- 347.
  • 9XU Xin-sheng, CHENG Xian-he, ZHOU Zhen- huan, et al. An analytical approach for the mixed- mode crack in linear viscoelastic media [J-1. European Journal of Mechanics-A/Solids, 2015, 52 : 12-25.
  • 10Leung A Y T, XU Xin-sheng, ZHOU Zhen-huan, et al. Analytic stress intensity factors for finite elastic disk using symplectic expansion [J 7. Engineering Fracture Mechanics, 2009, 76 ( 12 ) : 1866-1882.

二级参考文献63

  • 1高希光,孙志刚,廉英琦,宋迎东,朱如鹏.弱界面黏结通用单胞模型理论及应用[J].航空动力学报,2009,24(8):1684-1690. 被引量:3
  • 2孙志刚,宋迎东,廉英琦.弱界面粘结对复合材料有效性能的影响[J].航空动力学报,2005,20(6):915-919. 被引量:10
  • 3胡海昌.球面各向同性体弹性力学的一般理论.物理学报,1954,10:57-69.
  • 4Chen W Q,Ding H J. A state space-based stress anai ysis oI" a multilayered spherical shell with spherical sotropy [J].Journal of Applied Mechanics, 2001,68 109-114.
  • 5Chen W Q, Ding H J, Xu R Q. Three-dimensional static analysis of multi-layered piezoelectric hollow spheres via the state space method [J].International Journal of Solids and Structures, 2001,38: 4921-4936.
  • 6Chen W Q, Ding H J. Free vibration of multi-layered spherically isotropic hollow spheres [J]. International Journal of Mechanics Sciences, 2001,43: 667-680.
  • 7Shul'ga N A, Grigorenko A Y, Efimova T L. Free non-axisymmetric oscillations o{ a thick-walled, non- homogeneous, transversely isotropic, hollow sphere[J].Soviet Applied Mechanics, 1988,24 : 439-444.
  • 8Heyliger P, Wu Y C. Electroelastic fields in layered piezoelectric spheres. [J]. International Journal of En- gineering Science, 1999,37 : 143-161.
  • 9Ding H J,Chen W Q. Three Dimensional Problems of Piezoelasticity [M]. New York: Nova Science Pub lishers,2001:4-15.
  • 10Chen W Q,Wang L Z. Free vibration of functionally graded piezoceramic hollow spheres with radial polari- zation [J]. Journal of Sound and Vibration, 2002,251 (1) :103-114.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部