期刊文献+

基于细菌同源蛋白预测细菌最适生长温度的研究 被引量:1

Prediction of Optimal Growth Temperature of Bacterium Based on the Homologous Proteins
下载PDF
导出
摘要 不同细菌有不同的最适生长温度,而基因序列与其最适生长温度密切相关。为探究其相关性,选取92个具有不同最适生长温度的细菌的全基因组序列为研究材料,通过寻找92个细菌共有的同源蛋白,并计算共有同源蛋白中氨基酸的频率,发现共有同源蛋白的氨基酸频率特征与其最适生长温度存在着显著的相关关系,其中蛋白质序列中的螺旋结构与其最适生长温度关系最大。该研究为揭示细菌对温度的适应机制,以及对蛋白质稳定性相关的分子设计具有重要的意义。 The optimal temperature for each bacterium differs,which is related to its gene sequence. In order to explore the correlation between them,the known genome sequences of 92 bacteria with own different optimal temperatures were selected as the study material,then the common homologous protein from 92 bacteria were searched,and frequencies of the amino acids in homologous protein were calculated. A significant correlation between the frequency of the amino acid in homologous protein and the optimal growth temperature was realized. The analysis of the sites in homologous genes showed that the helix regions in the protein sequence were the most correlated with its optimal growth temperature. This study presents important significance on understanding the mechanism of the bacterial adaption to the temperature as well as designing the mutation to improve the protein stability.
出处 《生物技术通报》 CAS CSCD 北大核心 2016年第3期155-165,共11页 Biotechnology Bulletin
基金 国家自然科学基金项目(31371748)
关键词 细菌 最适生长温度 同源蛋白 氨基酸频率 bacterium optimal growth temperature homologous protein amino acid frequency
  • 相关文献

参考文献3

二级参考文献23

  • 1ROBB F T,CLARK D S. Adaptation of proteins from hyperthermophiles to high pressure and high temperature [ J ]. Mol Microbiol Biotechnol,1999,1 : 101 - 105.
  • 2HICKEY D A,SINGER G A. Genomic and proteomic adaptations to growth at high temperature[J].Genome Biol,2004,5:117.
  • 3HANEY P J,BADGER J H,BULDAK G L,et al.Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species[J].Proc Natl Acad Sci USA,1999,96:3578-3583.
  • 4LOLADZE V V,IBARRA-MOLERO B,SANCHEZ-RUIZ J M,et al.Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface[J].Biochemistry,1999,38:16419-16423.
  • 5GEORLETIE D,DAMIEN B,BLAISE V,et al.Structural and functional adaptations to extreme temperatures in psychrophilic,mesophilic,and thermophilic DNA ligases[J].Biol Chem,2003,278:37015-37023.
  • 6NICHOLSON H,BECKTEL W J,MATTHEWS B W.Enhanced protein thermostability from designed mutations that interact with α-helix dipoles[J].Nature,1988,336:651-655.
  • 7FROMMEL C,SANDER C.Thermitase,a thermostable subtilisin:Comparison of predicted and experimental structures and the molecular cause of thermostability[J].Proteins,1989,5:22-37.
  • 8PANTOLIANO M W,WHITLOW M,WOOD J F,et al.Large increases in general stability for subtilisin BPN through incremental changes in ihe free energy of unfolding[J].Biochemistry,1989,28:7205-7213.
  • 9Van DEN BURG B,VRIEND G,VELTMAN O R,et al.Engineering an enzyme to resist boiling[J].Proc Natl Acad Sci USA,1998,95:2056-2060.
  • 10WALKER J E,WONACOTT A J,HARRIS J I.Heat stability of a tetrameric enzyme,D-glyceraldehyde 3-phosphate dehydrogenase[J].Eur J Biochem,1980,108:581-586.

共引文献15

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部