期刊文献+

区域SAR海冰图像分割 被引量:1

SAR Ice Image Segmentation with Region
下载PDF
导出
摘要 针对宽观测带合成孔径雷达(Synthetic Aperture Radar,SAR)图像,提出了一种集成区域分割的算法。以区域为研究对象,依次进行基于区域的初始聚类和区域合并。基于Radarsat-1模式数据的实验结果表明,该算法可有效地提高分割准确性。 According to the Wide Band Aperture Radar Synthetic (SAR) ice image, it proposes an algorithm based on the class ofthe incidence angle effect. Based on Radarsat-1 Scan SAR mode data, it proposes a segmentation algorithm for integrated incidence angleeffect correction steps. Sea ice regions are reserched as objects, which does region-based intial clustering, then does type of correctionbased incidence angle effect and region merging one by one. The efficiency of the proposed algorithm has been demonstrated on thesegmentation of SAR sea ice image. The incidence angle effect has a significant influence on the backscattering of the mine.
出处 《唐山师范学院学报》 2016年第2期58-60,共3页 Journal of Tangshan Normal University
基金 安徽省高等学校自然科学研究项目(KJ2014B07 KJ2016A650 KJ2016A628)
关键词 合成孔径雷达 入射角效应 分割 海冰 SAR incidence angle effect segmentation sea ice
  • 相关文献

参考文献10

  • 1崔莹,熊博莅,蒋咏梅,匡纲要.结合结构相似度的自适应多尺度SAR图像变化检测[J].中国图象图形学报,2014,19(10):1507-1513. 被引量:7
  • 2赵庆平,姜恩华,赵鑫.基于区域增长迭代算法的SAR海冰图像分割[J].井冈山大学学报(自然科学版),2013,34(6):38-43. 被引量:4
  • 3Clausi D A, Yue B. Comparing co-occurrence probabilitiesand Markov random fields for texture analysis of SAR seaice imagery[J]. IEEE Transaction on Geoscience and RemoteSensing, 2004, 42(1): 215-228.
  • 4Yu Q, Moloney C, Williams F M. SAR sea-ice textureclassification using discrete wavelet transform basedmethods[C]. Proceeding of the 2002 IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS2002), 2002, 5: 3041-3043.
  • 5Soh L K, Tsatsoulis. Texture analysis of SAR sea ice imageryusing grey level co-occurrence matrices[J].IEEE Transactionon Geoscience and Remote Sensing, 1999, 37(2): 780-795.
  • 6Vincent L, Solille P. Watershed in digital spaces: an efficientalgorithm based on immersion simulations[J]. IEEE Transactionon Pattern Analysis and Machine Intelligence, 1991,13(6): 583-598.
  • 7赵庆平,姜恩华,李素文.有纹理保护的SAR海冰图像分割[J].安徽大学学报(自然科学版),2014,38(3):61-67. 被引量:4
  • 8Li S. Markov Random Field Modeling in ComputerVision[M]. New York: Springer, 2009: 108-112.
  • 9Yang X Z, Clausi D A. SAR sea ice image segmentationbased on edge-preserving watersheds[C]. Montreal Quebec,Canada, Fourth Canadian Conference on Computer andRobot Vision (CRV’07), 2007: 426-431.
  • 10Yu Q Y. Automated SAR sea ice interpretation[D]. Waterloo:University of Waterloo, 2006: 30-32.

二级参考文献30

  • 1周伟华,汪慧兰,罗斌.一种综合多种技术的SAR图像增强方法[J].安徽大学学报(自然科学版),2006,30(2):37-40. 被引量:1
  • 2薛笑荣,曾琪明,赵荣椿.一种快速的SAR图像分类方法[J].计算机科学,2007,34(5):222-223. 被引量:4
  • 3张红蕾,宋建社,张宪伟.基于二维模糊熵的GA在SAR图像分割中的应用[J].计算机工程,2007,33(5):158-160. 被引量:6
  • 4RAFAEL C GONZALEZ,RICHARD E WOODS.数字图像处理(第二版)[M].阮秋琦,阮宇智译.北京:电子工业出版社,2003:233-240.
  • 5Li S Z. Markov Random Field Modeling in Image Analysis[M]. Springer, 2009.
  • 6Vincent L, Softie P. Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.
  • 7Salman N, Liu C Q. Image Segmentationand Edge Detection Based on Watershed Techniques[J]. International Journal of Computersand Applications, 2003, 25(4):258-263.
  • 8Li S Z. Markov random field modeling in image analysis [ M ]. New York : Springer, 2009.
  • 9Soh L K,Tsatsoulis C, Gineris D, et al. An intelligent system for SAR sea ice image classification [ J ]. IEEE Trans Geosci Remote Sens ,2004 ,42 ( 1 ) : 229-248.
  • 10Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks [ J]. IEEE Trans Geosci Remote Sens ,2004,42 ( 7 ) : 1566-1574.

共引文献10

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部