期刊文献+

多特征组合与自动加权K-Means聚类算法的影像分类技术研究 被引量:3

Research on Remote Sensing Image Classification Technology Based on Multi-Feature Combining and Automatic Weighted K-Means
下载PDF
导出
摘要 为了提高遥感影像地物分类精度,提出了一种基于多特征组合与自动加权K-Means聚类算法的影像分类方法。首先提取影像的SIFT,GIST,颜色,Census和Gabor等多种类型特征,然后通过实验分析确定最佳特征组合。针对一般K-Means算法没有考虑各个特征值权重的问题,提出利用自动加权K-Means算法计算不同特征分量的权值,分别对SIFT,GIST和Gabor特征构建了基于权重的影像特征词汇表;然后利用稀疏编码算法进行影像编码;最后使用SVM算法完成影像分类。通过实验表明提出的方法能有效提高遥感影像分类准确性,并且具有较好的稳定性和鲁棒性。 In order to improve the precision of remote sensing image classification, this paper proposed a new algorithm of images classification on the basis of multi features combination and automatic weighted clustering KMeans. Firstly, SIFT, GIST, Census, Gabor color and many other features are extracted from the images, then the best features combination is determined through the experimental analysis. Aim at the fact that general K-Means algorithm ignore the weight of each features, the automatic weighted K-Means algorithm was adopted to calculate the weight of different features,the images features vocabulary based on the weight for SIFT, GIST, Census and Gabor was constructed respectively. The sparse coding algorithm was adopted to code the images. Finally, the SVM algorithm was adopted to complete the images classification. The experiment results showed that the proposed method could improve the classification accuracy of remote sensing images effectively, and is more stable and robust.
机构地区 信息工程大学
出处 《测绘科学技术学报》 CSCD 北大核心 2015年第6期589-593,共5页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41201390) 国家863计划项目(2013AA12A202)
关键词 特征组合 K-MEANS算法 稀疏编码 视觉词袋 支持向量机 multi-feature combining K-Means algorithm sparse coding bag of words SVM
  • 相关文献

参考文献13

二级参考文献117

  • 1李桂芝,安成万,杨国胜,谭民,涂序彦.基于场景识别的移动机器人定位方法研究[J].机器人,2005,27(2):123-127. 被引量:20
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3顾志伟,吴秀清,荆浩,尹东,王艺元.一种基于特征选择的医学图像检索方法[J].中国生物医学工程学报,2007,26(1):30-34. 被引量:9
  • 4杨俊,王润生.遥感道路的场景感知与分类检测[J].计算机辅助设计与图形学学报,2007,19(3):334-339. 被引量:12
  • 5O. A and T. A, "Modeling the shape of the scene: a holistic representation of the spatial envelope, " International Journal in Computer Vision, vol. 42, pp. 145-175, 2001.
  • 6C. Carson, M. Thomas, S. Belongie, J. M, Hellerstein, and J. Malik, "Blobworld: a system for region-based image indexing and retrieval," in International Conference on Visual Information Systems 1999.
  • 7P. Lipson, E. Grimson, and P. Sinha. , "Configuration based scene classification and image indexing, " in IEEE Computer Society Conference on Computer Vision and Pattern Recognition. , Puerto Rico, 1997.
  • 8J. R. Smith and C. Li, "Image classification and quer ying using composite region templates, " Computer Vision and Image Understanding, vol 75, pp. 165-174, 1999.
  • 9J. Sivic and A. Zisserman, "Video Google: A Text Retrieval Approach to Object Matching in Videos," in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003.
  • 10T. Hofmann , " Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning,, vol. 42, pp. 177-196, 2001.

共引文献55

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部