期刊文献+

不同传感信号对风电叶片载荷智能控制影响研究

Effect of Various Sensing Signals on Smart Load Control of Wind Turbine Blade
原文传递
导出
摘要 本文在自主搭建的DTEF(柔性尾缘襟翼)"智能叶片"仿真实验平台的基础上,讨论了三种不同传感信号方案,即信号来自叶片挥舞方向加速度,叶尖位移和叶根挥舞力矩,对控制效果影响。首先,本文分析了四组不同位置处加速度信号对控制效果的影响,接着对比了三种传感器信号方案的优劣,最后详细分析了相关流动控制机理。通过详细的讨论,本文得出结论:1)由于复杂流动分离和变桨作用,导致风力机叶片在Ⅱ区运行时选取加速度传感信号越靠近叶尖,控制效果越差,与Ⅲ区运行时相反;2)三种传感器信号方案中,选取叶根挥舞力矩为传感信号时控制效果最佳,相比原有主机控制最大降低载荷12.0%~22.5%;3)DTEF的作用扰乱了控制前叶片流动-结构间较好的同步性,削弱了叶片系统间的气弹耦合作用,从而有效地减少了叶轮受载。 This paper presented a numerical study on the smart fatigue load control of a large-scale wind turbine blade.Three control strategies,with representative sensing signals from flapwise acceleration,root moment and tip deflection of the blade,respectively,were mainly investigated on our newly developed aero-servo-elastic platform.It was observed that the smart control greatly modified in-phased flow-blade interaction into anti-phased one at primary IP mode,significantly enhancing the damping of fluid-structure system and subsequently contributing to effectively attenuated fatigue loads on blade,drive-chain components and tower.The aero-elastic physics behind the strategy base on the feedback signal from the flapwise root moment,with stronger dominant load information and higher signal-to-noise ratio,was more drastic,and thus outperformed other two strategies,leading to the maximum reduction percentages of the fatigue load within a range of 12.0%~22.5%,in contrast to the collective pitch control method.The finding pointed to a crucial role the sensing signal played in the smart blade control.In addition,the performances within region Ⅲ were much better than those within region Ⅱ,exhibiting the benefit of the smart rotor control since most of the fatigue damage was believed to be accumulated beyond the rated wind speed.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第4期747-754,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金优秀青年基金(No.51222606) 科技部863课题(No.2012AA051303)
关键词 智能旋翼控制 海上风电能源 疲劳载荷 传感信号 流体叶片相互作用 smart rotor control offshore wind energy fatigue load sensing signal flow-blade interaction
  • 相关文献

参考文献10

  • 1Bossanyi E A. The Design of Closed Loop Controllers for Wind Turbines [J]. Wind energy, 2000, 3(3): 149-163.
  • 2Barlas T K, Van Kuik G. Review of State of the Art in Smart Rotor Control Research for Wind Turbines [J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27.
  • 3Wilson D G, Resor B R, Berg D E, et al. Active Aerody- namic Blade Distributed Flap Control Design Procedure for Load Reduction on the UpWind 5 MW Wind Turbine [C]// Proceedings of the 48th AIAA Aerospace Sciences Meeting, 2010:25~264.
  • 4Castaignet D, Couehman I, Poulsen N K, et al. Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade [J]. Control Systems Technology, IEEE Transactions on, 2013, 21(4): 1105- 1116.
  • 5Van Wingerden J, Hulskamp T, Barlas T K, et ah Smart Dynamic Rotor Control: Part 3, Advanced Controller De- sign [C]// TORQUE 2010: The Science of Making Torque From Wind, 2010:701-706.
  • 6Andersen P B. Advanced Load Alleviation for Wind Tur- bines: using Adaptive Trailing Edge Flaps: Sensoring and Control [D]. The Technical University of Denmark, Riso- PhD-61(EN), 2010.
  • 7Zhang Mingming, Tan Bin, Xu Jianzhong. Parameter Study of Sizing and Placement of Deformable Trailing Edge Flap on Blade Fatigue Load Reduction [J]. Renew- able Energy, 2015, 77:21~226.
  • 8Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5-MW Reference Wind Turbine for Offshore System De- velopment [M]. National Renewable Energy Laboratory, 2009:5 32.
  • 9Zhang M M, Cheng L, Zhou Y. Asynchronous Con- trol of Vortex-Induced Acoustic Cavity Resonance Using Imbedded Piezo-Electrie Actuators [J]. The Journal of the Acoustical Society of America, 2009, 126(1): 36-45.
  • 10张明明,余畏,谭斌,徐建中.极端风剪切风况下的风电叶片载荷智能控制流动机理研究[J].工程热物理学报,2014,35(10):1951-1954. 被引量:8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部