期刊文献+

不变凸映射的向量优化问题的强解

Strong solutions to the vector optimization problems with invex mappings
下载PDF
导出
摘要 在无限维赋范线性空间中,研究具有不变凸映射的向量似变分不等式问题与向量优化问题,讨论两类问题的强解之间的等价关系,利用著名的Fan-KKM定理,得到向量似变分不等式问题的强解,从而得到向量优化问题强解的存在定理。 In this study,vector variational-like inequality problem and vector optimization problem with invex mappings in infinite dimensional normed linear spaces were investigated.The equivalent relationship between strong solutions to two problems were discussed.Moreover,by using the well-known Fan-KKM theorem,the existence theorems of strong solutions for two problems were obtained.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2015年第5期411-414,共4页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11201216) 江西省自然科学基金(20151BAB201020) 中国博士后科学基金(2015M582047)
关键词 向量优化问题 向量似变分不等式 不变凸映射 强解 Vector optimization problem vector variational-like inequality invex mapping strong solution
  • 相关文献

参考文献7

  • 1傅俊义.具有控制结构与不变凸映射的向量优化问题[J].南昌大学学报(理科版),2014,38(1):4-7. 被引量:3
  • 2张毅,蔡国华,王三华,傅俊义.一个与广义KKM定理等价的极小极大不等式[J].南昌大学学报(理科版),2014,38(5):413-416. 被引量:1
  • 3FU J Y,WANG S H. Generalized Strong Vector Quasi-equilibrium Problem with Domination Structure[J].J Glob Optim, 2013,55 : 839-847.
  • 4FU J Y. Generalized Vector Quasi-equilibrium Problems[J]. Math Meth Oper Res,2000,52:57-64.
  • 5WEIR T, JEYAKUMAR V. A Class of Nonconvex Functions and Mathematical Programming[J]. Bulletn of Australian Mathematical Society, 1998, 38: 177- 189.
  • 6JAHN J. Mathematical Vector Optimization in Partially Ordered Linear Spaces[M]. New York, Verlag Peter Lang, 1986.
  • 7CHEN G Y,HUANG X X,YANG X Q. Vector Optimization, Set-Valued and Variational Analysis [M]. Berlin, Heidelberg, Springer-Verlag, 2005.

二级参考文献18

  • 1YUAN X Z. KKM Theory and Applications in Nonlin-ear Analysis[M]. New York: Dekker, 1999.
  • 2PARK S. New Generalizations of Basic Theorems inthe KKM theory [J]. Nonlinear Anah 2011, 74 : 3000-3010.
  • 3TIAN G Q. Generalized KKM Theorems, Minimax In-equalities ,and Their Applications[J]. J Math Anal Ap-pl, 1994,83 :375-389.
  • 4YANG Z,PU Y J. Generalized Knaster-Kuratowski-Mazurkiewicz Theorem Without Convex Hull [J]. JOptim Theory Appl,2012,154 :17-29.
  • 5GRANAS A’DUGUNDJI J. Fixed Point Theory[M].Springer,New York,2003.
  • 6FU J Y,WANG S H, Generalized Strong Vector Qua-si-equilibrium Problem with Domination Structure[J].J Glob Optim,2013,55:839-847.
  • 7BERGE C. Topological Spaces[M]. Oliver h- Boyd,Edinburgh and Lodon, 1963.
  • 8CHEN G Y, HUANG X X, YANG X Q. Vector Opti mization, Set-Valued and Variational Analysis [M]. Berlin, Heidelberg,Springer-Verlag, 2005.
  • 9LUC D T . Theory of Vector Optimization [M]. Springer-Verlag, Berlin, New York, 1984.
  • 10JAHN J. Mathematical Vector Optimization in Parti- cally Ordered Linear Spaces [M]. Verlag Peter Lang, Frankfurt am Main Bern, New York, 1986.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部