期刊文献+

基于小波包分解和矩阵分形的齿轮箱故障诊断研究 被引量:5

Gearbox Fault Wavelet Packet Decomposition And Matrix Diagnosis Based On Fractal
下载PDF
导出
摘要 研究了小波包分解和矩阵分形相结合在齿轮箱故障诊断中的应用,讨论了小波包分解的计算方法和分形矩阵的计算方法。首先对采集的齿轮箱各种工况信号运用小波包三重分解的方法对进行分解,通过计算其分解得到的分量信号的广义维数构建分形矩阵,分析发现在不同工况下通过小波包分解得到的分形矩阵明显不同。通过计算样本信号和待检测信号的相关系数,用柱状图做直观比较确定了待检测信号故障类型,验证了该方法能够有效应用于应齿轮箱故障诊断中。 The wavelet packet decomposition and matrix fractal combined gearbox fault diagnosis,discussed the calculation method based on wavelet packet decomposition and fractal matrix. First,various conditions gearbox signal wavelet packet double decomposition,by calculating its generalized fractal dimension construct matrix analysis found that under different conditions by fractal matrix of wavelet packet decomposition was significantly different,and by computing the signal of sample and correlation coefficient of the signal to be detected,the fault types of the signal to be detected was determined by the intuitive comparison of histogram,the method can be applied should gearbox fault diagnosis.
出处 《机械设计与制造》 北大核心 2016年第4期20-23,共4页 Machinery Design & Manufacture
基金 国家自然科学基金项目:基于粒子群优化和滤波技术的复杂传动装置早期故障诊断研究(50875247)
关键词 小波包分解 矩阵分形 齿轮箱 故障诊断 Wavelet Packet Decomposition Matrix Fractal Gear Box Fault Diagnosis
  • 相关文献

参考文献8

二级参考文献49

  • 1吴明强,李霁红,曹爱东,史慧.故障诊断专家系统综合智能推理技术研究[J].计算机测量与控制,2004,12(10):932-934. 被引量:32
  • 2毛庆华,刘哲,许文彤.航天测控设备远程诊断系统的研究[J].计算机测量与控制,2004,12(6):501-503. 被引量:2
  • 3史慧,王伟,高戈.智能故障诊断专家系统开发平台[J].计算机测量与控制,2005,13(11):1167-1169. 被引量:18
  • 4Liu H, Huang S T. Fuzzy Transductive Support Vector Machines for Hypertext Classification. International Journal of Uncertainty, Fuzziness Knowledge-Based Systems, 2004, 12 ( 1 ) : 21 - 36.
  • 5Vapnik V N. The Natural of Statistical Learning Theory. New York, USA : Springer-Verlag, 1995.
  • 6Joachims T. Transductive Inference for Text Classification Using Support Vector Machines// Proc of the 16th International Conference on Machine Learning. Bled, Slovenia, 1999 : 200 - 209.
  • 7Chapelle O, Chi M, Zien A. A Continuation Method for Semi-Supervised SVMs// Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006: 185-192.
  • 8Astorino A, Fuduli A. Nonsmooth Optimization Techniques for Semi-Supervised Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2135-2142.
  • 9Tian Yingjie, Yan Manfu. Unconstrained Transduetive Support Vector Machines// Proc of the 4th Intemational Conference on Fuzzy System Knowledge Discovery. Haikou, China, 2007, Ⅱ: 181 - 185.
  • 10Silva M M, Maia T T, Braga A P. An Evolutionary Approach to Transduction in Support Vector Machines//Proc of the 5th International Conference on Hybrid Intelligence System. Kitakyushu, Japan, 2005 : 329 -334.

共引文献117

同被引文献39

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部