摘要
回转支承在风电、工程机械等领域广泛应用,是一种能够同时承受大量轴向、径向载荷与倾覆力矩的重要工业生产部件。提出了一种基于双谱分析的故障诊断方法。在实际工况下,由于回转支承工作环境恶劣,其故障发生时所产生的信号一般含有大量的背景噪声,并且其信号会呈现出非线性与非高斯性。直接使用常见的频谱分析方法难以得到可靠的结论。而所采用的基于高阶统计量的双谱分析故障诊断方法是解决非线性相位耦合和非高斯性的有效工具,采用双谱分析可以有效抑制高斯背景噪声的影响,提去除隐藏在信号中的非高斯特征。
Slewing bearings are widely used in the field of wind power,engineering machinery,etc,which can bear a large axial and radial load and tilting moment of the important industrial production parts. It presents a fault diagnosis method based on bispectrum analysis. Under the actual working condition,because of the bad slewing bearing work environment,the signal produced by fault occurs generally contains a lot of background noise,and the signal will present a nonlinear and non-Gaussian. Direct use of common spectrum analysis method is difficult to get reliable conclusion. Adoptingbased on higher order statistics of the double spectrum analysis of fault diagnosis method is effective to solve nonlinear phase coupling and non Gaussian tool,and using bispectrum analysis can effectively suppress Gaussian background noise,and the effect of removal of non-Gaussian characteristics hidden in the signal.
出处
《机械设计与制造》
北大核心
2016年第4期253-257,共5页
Machinery Design & Manufacture
基金
国家自然科学基金(51375222)
2014年度高校"青蓝工程"中青年学术带头人
关键词
回转支承
双谱分析
非线性
非高斯性
Slewing Bearing
Bispectrum Analysis
Nonlinear
Non Gaussian