摘要
Hydrogen storage composites Nd2Mg17-50 wt.%Ni-x wt.%CeO2(x=0, 0.5, 1.0, 1.5, 2.0) were obtained by induction-ball milling method. The catalytic effect of CeO_2 on hydriding kinetics of Nd_2Mg17-50 wt.%Ni composite was investigated. X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM), selected area electron diffraction(SAED) analyses showed that Nd_2Mg17-50 wt.%Ni alloy had a multiphase structure, consisting of NdMg12, NdMg_2Ni, Mg_2Ni and Ni phases and the addition of catalyst CeO_2 prompted the composites to be partly transformed into amorphous strucutre. The CeO_2 improved the maximum hydrogen capacity of Nd_2Mg17-50 wt.%Ni alloy from 3.192 wt.% to 3.376 wt.%(x=1.0). What's more, the increment of diffusion coefficient D led to the faster hydriding kinetics, which was calculated by Avrami-Erofeev equation. The dehydrogenation temperature reduced from 515.54 to 504.72 K was mainly caused by the decrease of activation energy from 93.28 to 69.36 kJ /mol, which was proved by the Kissinger equation.
Hydrogen storage composites Nd2Mg17-50 wt.%Ni-x wt.%CeO2(x=0, 0.5, 1.0, 1.5, 2.0) were obtained by induction-ball milling method. The catalytic effect of CeO_2 on hydriding kinetics of Nd_2Mg17-50 wt.%Ni composite was investigated. X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM), selected area electron diffraction(SAED) analyses showed that Nd_2Mg17-50 wt.%Ni alloy had a multiphase structure, consisting of NdMg12, NdMg_2Ni, Mg_2Ni and Ni phases and the addition of catalyst CeO_2 prompted the composites to be partly transformed into amorphous strucutre. The CeO_2 improved the maximum hydrogen capacity of Nd_2Mg17-50 wt.%Ni alloy from 3.192 wt.% to 3.376 wt.%(x=1.0). What's more, the increment of diffusion coefficient D led to the faster hydriding kinetics, which was calculated by Avrami-Erofeev equation. The dehydrogenation temperature reduced from 515.54 to 504.72 K was mainly caused by the decrease of activation energy from 93.28 to 69.36 kJ /mol, which was proved by the Kissinger equation.
基金
Project supported by National Natural Science Foundation of China(51161015,51371094)
the Natural Science Foundation of Inner Mongolia,China(2013MS0722,2014MS0529)
Talent Incubation Funding of School of Materials and Metallurgy(2014CY012)