期刊文献+

一种噪声未知的新型空间频谱分布协作感知算法

Novel cooperative sensing algorithm for spatial spectrum distribution with unknown noises
下载PDF
导出
摘要 为了获得占用频段、主用户发射功率、位置和本地噪声等全局信息,给出了一种主用户全局功率谱模型,提出了一种噪声未知的新型空间频谱分布协作感知算法.利用变分贝叶斯推断理论,估计出模型系数向量和本地噪声向量,以求得全局信息.仿真结果表明,所提算法在较高信噪比下具有较高的估计精度和收敛稳定性.该算法性能虽弱于噪声已知算法的性能,但相比基于非负最小二乘准则的算法具有更好的均方误差性能. In order to obtain the global information including occupied frequency bands,transmitting powers of the primary users( PUs),locations and local noises,a model for the global power spectral density( PSD) of the PUs is constructed,and a novel cooperative sensing algorithm for spatial spectrum distribution with unknown noises is also proposed. By utilizing variational Bayesian inference( VBI) theory,the model coefficient vector and the local noise vector are estimated to obtain the global information. The simulation results showthat the proposed algorithm has high accuracy and convergence stability with the high signal noise ratio( SNR). Though the performance of this algorithm is worse than that of the algorithm with known noises,but its mean square error( MSE) performance is better than that of the algorithm based on the non-negativity least square( NNLS) criterion.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期231-236,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61201248 61271207 61372104)
关键词 认知无线电 空间频谱分布 协作频谱感知 变分贝叶斯推断 稀疏性 cognitive radio spatial spectrum distribution cooperative spectrum sensing variational Bayesian inference sparsity
  • 相关文献

参考文献13

  • 1Goldsmith A, Jafar S A, Maric I, et al. Breaking spec-trum gridlock with cognitive radios An information the- oretic perspective [J]. Proceedings of the IEEE, 2009, 97 (5) 894 - 914. DOI: 10. 1109/JPROC. 2009. 2015717.
  • 2Lu L, Zhou X W, Onunkwo U, et al. Ten years of re- search in spectrum sensing and sharing in cognitive radio [ J ]. EURAS1P Journal on Wireless Communications, 2012, 2012: 28.
  • 3Zeng Y H, Liang Y C, Hoang A T, et al. A review on spectrum sensing for cognitive radio: Challenges and so- lutions[ J ]. EURASIP Journal on Advances in Signal Processing, 2010, 2010 ( 1 ) : 381465. DOI: 10. 1155/ 2010/381465.
  • 4Nishimori K, Taranto R D, Yomo H, et al. Spatial op- portunity for cognitive radio systems with heterogeneous path loss conditions [ C]//IEEE Vehicular Technology Conference. Dublin, Ireland, 2007 2631 - 2635.
  • 5Riihijarvi J, Mahonen P. Exploiting spatial statistics Of primary and secondary users towards improved cognitive radio networks [ C ]//IEEE 3 rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications. Singapore, 2008 : 1 - 7.
  • 6Min A W, Kim K H, Singh J P, et al. Opportunistic spectrum access for mobile cognitive radios [ C ]//2011 Proceedings of IEEE INFOCOM Conference. Shanghai, China, 2011 : 2993 - 3001.
  • 7Caso G, Nardis L D, Holland O, et al. Impact of spa- tio-temporal correlation in cooperative spectrum sensing for mobile cognitive radio networks [ C] //Proceedings of the lOth International Symposium on Wireless Com- munication Systems. Ilmenau, Germany, 2013 : l - 5.
  • 8Paura L, Savoia R. Mobility-aware sensing enabled ca- pacity in cognitive radio networks [ C]/2013 IEEE In- ternational Workshop on Measurements and Networking Proceedings. Naples, Italy, 2013 : 179 - 183.
  • 9吴名,宋铁成,胡静,沈连丰.基于变分贝叶斯推断的新型全局频谱协作感知算法[J].通信学报,2016,37(2):115-123. 被引量:3
  • 10Giannakis G B, Tepedelenlioglu C. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels [ J ]. Pro- ceedings of the IEEE, 1998, 86(10) : 1969 - 1986. DOI: I0.1109/5. 720248.

二级参考文献13

  • 1GOLDSMITH A, JAFAR S, MARIC I, et al. Breaking spectrum gridlock with cognitive radios an information theoretic perspective[J]. Proceedings of the IEEE, 2009, 97(5): 894-914.
  • 2LU L, ZHOU X W, ONUNKWO U, et al. Ten years of research in spectrum sensing and sharing in cognitive radio[J]. Eurasip Journal on Wireless Communications, 2012, 28: 1-16.
  • 3ZENG Y H, LIANG Y C, HOANG A T, et al. A review on spectrum sensing for cognitive radio: challenges and solutions[J]. Eurasip Jour- nal on Advances in Signal Processing, 2010, ID 381465.
  • 4NISHIMORI K, TARANTO R D, YOMO H, et al. Spatial opportunity for cognitive radio systems with heterogeneous path loss eondi-tions[C]//IEEE 65th Vehicular Technology Conference VTC. c2007: 2631-2635.
  • 5RI1HIJARVI J, MAHONEN P. Exploiting spatial statistics of primary and secondary users towards improved cognitive radio networks[C]// 1EEE 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications CrownCom. c2008:1-7.
  • 6MIN A W, KIM K H, SINGH J P, et al. Opportunistic spectrum access for mobile cognitive radios[C]//IEEE INFOCOM Conference. c2011: 2993-3001.
  • 7CASO G, NARDIS L D, HOLLAND O, et al. Impact of spatio- tem- poral correlation in cooperative spectrum sensing for mobile cognitive radio networks[C]//The 10th International Symposium on Wireless Communication Systems ISWCS. c2013: 1-5.
  • 8PAURA L, SAVOIA R. Mobility-aware sensing enabled capacity in cognitive radio networks[C]//2013 IEEE International Workshop on Measurements and Networking Proceedings M&N. c2013:179-183.
  • 9LI F, XU Z B. Sparse bayesian hierarchical prior modeling based cooperative spectrum sensing in wideband cognitive radio networks[J] IEEE Signal Process Lettes, 2014, 21(5): 586-590.
  • 10GIANNAKIS G B, TEPEDELENLIOGLU C. Basis expansion models and diversity techniques tbr blind identification and equalization of time- vary- ing channels[J]. Proceedings of the IEEE, 1998, 86(10): 1969-1986.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部