期刊文献+

基于磁共振影像特征集成融合的AD诊断 被引量:2

AD diagnosis based on integrated fusion of MR image features
下载PDF
导出
摘要 为了得到更高更稳定的阿尔茨海默病(AD)诊断准确率,对脑磁共振影像纹理特征进行了集成融合,并用于AD分类诊断.首先,基于病理知识提取脑磁共振影像中左右脑相关解剖结构的体积、纹理特征;然后,采用链式智能体遗传算法与支持向量机相结合的封装式特征选择分类集成模型,对提取的特征集进行特征选择,从而实现融合;最后,利用融合后的特征进行分类诊断,并将融合后的分类结果与融合前以及采用p值法特征选择的分类结果进行对比.实验结果表明,相比融合前的特征以及采用p值法进行选择的特征,利用所提算法融合后的特征具有更高且更稳定的分类准确率、灵敏度和特异度. In order to obtain higher and more stable diagnostic accuracy of Alzheimer's disease( AD),the texture features of magnetic resonance( MR) images were integrated and fused for AD diagnosis. First,the volume and texture features of the left and right parts of multiple anatomical structures were extracted based on pathological knowledge. Secondly,by combining the chain-like agent genetic algorithm( CAGA) and support vector machine( SVM),a feature selection classification ensemble model was designed to conduct deep feature selection and realize feature fusion. Finally,the fused features were used for classification and diagnosis of AD and the classification results are compared with those before fusion and those obtained by the p-value method. The experimental results showthat the features fused by this proposed algorithm have higher and more stable classification accuracy,sensitivity and specificity than the features before fusion and the features selected by the p-value method.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期271-276,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61108086 91438104 11304382) 中国博士后科学基金资助项目(2013M532153) 中央高校基本科研业务费专项资金资助项目(CDJZR12160011 CDJZR13160008 CDJZR155507) 重庆市博士后科研项目特别资助项目
关键词 磁共振影像 阿尔茨海默病 影像特征融合 特征选择分类集成模型 链式智能体遗传算法 支持向量机 magnetic resonance(MR) image Alzheimer's disease(AD) image feature fusion feature selection classification ensemble model chain-like agent genetic algorithm(CAGA) support vector machine(SVM)
  • 相关文献

参考文献14

  • 1Tondelli M, Wilcock G K, Nichelli P, et al. Structural MRI changes detectable up to ten years before clinical Alzheimer's disease [ J ]. Neurobiol Aging, 2012, 33 (4) : 825. e25 -825. e36. DOI:10. 1016/j. neurobiolag- ing. 2011.05. 018.
  • 2L6tj6nen J, Wolz R, Koikkalainen J, et al. Fast and ro- bust extraction of hippocampus from MR images for di- agnostics of Alzheimer's disease [ J]. Neuroimage, 2011, 56 ( 1 ) : 185 - 196. DOI : 10. 1016/j. neuroimage. 2011.01. 062.
  • 3Schoonenboom N S M, van der Flier W M, Blanken- stein M A, et al. CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease [J]. Neurobiol Aging, 2008, 29(5) : 669 - 675. DOI: 10. 1016/j. neurobiolaging. 2006.11. 018.
  • 4Salat DH. Imaging small vessel-associated white matter changes in aging[J]. Neuroscience, 2014, 276:174 - 186. DOI: 10. 1016/j. neuroscience. 2013.11. 041.
  • 5李昕,童隆正,周晓霞,王旭.基于MR图像三维纹理特征的阿尔茨海默病和轻度认知障碍的分类[J].中国医学影像技术,2011,27(5):1047-1051. 被引量:18
  • 6Chincarini A, Bosco P, Calvini P, et al. Local MRI analysis approach in the diagnosis of early and pro&o- mal Alzheimer's disease [J]. Neuroimage, 2011, 58 (2) : 469 - 480. DOI: 10. 1016/j. neuroimage. 2011. 05. 083.
  • 7Kim J, Lee J H. Integration of structural and functional magnetic resonance imaging improves mild cognitive impairment detection[J]. Magn Reson Imaging, 2013, 31(5) : 718 -732. DOI:10.1016/j. mri. 2012.11.009.
  • 8Chen Y W, Lin C L, Mimori A. Multimodal medical image registration using particle swarm optimization [ C]//2008 IEEE International Conference on Intelli- gent Systems Design and Applications. Kaohsiung, Chi- na, 2008:127 - 131.
  • 9BaiUard C, HeUier P, BariUot C. Segmentation of brain 3D MR images using level sets and dense regis- tration [ J ]. Medical Image Analysis, 2001,5 ( 3 ) : 185 - 194.
  • 10Gupta L, Sortrakul T. A Gaussian-mixture-based image segmentation algorithm [ J ]. Pattern Recognition, 1998, 31(3) :315 -325.

二级参考文献19

  • 1章炜炜,张志广,冯树理,王亮,于春水,李坤成.阿尔茨海默病DT-MRI脑图像的识别[J].清华大学学报(自然科学版),2005,45(12):1684-1687. 被引量:4
  • 2Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med, 2004,256(3) : 183-194.
  • 3Karas GB, Scheltens P, Rombouts SA, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer's dis- ease. Neuroimage, 2004,23(2) :708-716.
  • 4Salat DH, Greve DN, Pacheco JL, et al. Regional white matter volume differences in nondemented aging and Alzheimer's disease. Neuroimage, 2009,44(4) : 1247-1258.
  • 5Salat DH, Tuch DS, Van Der Kouwe AJ, et al. White matter pa- thology isolates the hippocampal formation in Alzheimer's disease. Neurobiol Aging, 2010,31 (2) : 244-256.
  • 6Di Paola M, Luders E, Di luio F, et al, Callosal atrophy in mild cognitive impairment and Alzheimer's disease: different effects in different stages. Neuroimage, 2010,49(1):141-149.
  • 7Chaim TM, Duran FL, Uchida RR, et al. Volumetric reduction of the corpus callosum in Alzheimer's disease in vivo as assessed with voxel-based morphometry. Psychiatry Res, 2007, 154 (l): 59-68.
  • 8Wang PJ, Saykin AJ, Flashman LA, et al. Regionally specific at- rophy of the corpus callosum in AD, MCI and cognitive com- plaints. Neurohiol Aging, 2006,27(11):1613-1617.
  • 9Naggara O, Oppenheim C, Rieu D, et al. Diffusion tensor ima- ging in early Alzheimer's disease. Psychiatry Res, 2006, 146(3): 243-249.
  • 10Georgiadis P, Cavouras D, Kalatzis I, et al. Enhancing the dis- crimination accuracy between metastases, gliomas and meningio- mas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging, 2009, 27 (1) :120-130.

共引文献17

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部