摘要
为了得到更高更稳定的阿尔茨海默病(AD)诊断准确率,对脑磁共振影像纹理特征进行了集成融合,并用于AD分类诊断.首先,基于病理知识提取脑磁共振影像中左右脑相关解剖结构的体积、纹理特征;然后,采用链式智能体遗传算法与支持向量机相结合的封装式特征选择分类集成模型,对提取的特征集进行特征选择,从而实现融合;最后,利用融合后的特征进行分类诊断,并将融合后的分类结果与融合前以及采用p值法特征选择的分类结果进行对比.实验结果表明,相比融合前的特征以及采用p值法进行选择的特征,利用所提算法融合后的特征具有更高且更稳定的分类准确率、灵敏度和特异度.
In order to obtain higher and more stable diagnostic accuracy of Alzheimer's disease( AD),the texture features of magnetic resonance( MR) images were integrated and fused for AD diagnosis. First,the volume and texture features of the left and right parts of multiple anatomical structures were extracted based on pathological knowledge. Secondly,by combining the chain-like agent genetic algorithm( CAGA) and support vector machine( SVM),a feature selection classification ensemble model was designed to conduct deep feature selection and realize feature fusion. Finally,the fused features were used for classification and diagnosis of AD and the classification results are compared with those before fusion and those obtained by the p-value method. The experimental results showthat the features fused by this proposed algorithm have higher and more stable classification accuracy,sensitivity and specificity than the features before fusion and the features selected by the p-value method.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第2期271-276,共6页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(61108086
91438104
11304382)
中国博士后科学基金资助项目(2013M532153)
中央高校基本科研业务费专项资金资助项目(CDJZR12160011
CDJZR13160008
CDJZR155507)
重庆市博士后科研项目特别资助项目
关键词
磁共振影像
阿尔茨海默病
影像特征融合
特征选择分类集成模型
链式智能体遗传算法
支持向量机
magnetic resonance(MR) image
Alzheimer's disease(AD)
image feature fusion
feature selection classification ensemble model
chain-like agent genetic algorithm(CAGA)
support vector machine(SVM)