期刊文献+

橡胶弹性元件低温刚度预测方法 被引量:4

The Method of Stiffness Prediction of Rubber Elastic Elements in Low Temperature
下载PDF
导出
摘要 在20,0,-10,-20,-30,-40℃下,对橡胶材料进行单轴拉伸试验,采用4种常用类型本构模型拟合试验数据,得出不同温度下的模型参数,并利用拟合优度对模型拟合效果进行评估,结果表明Ogden3和4阶模型拟合效果最好。分别考虑环境温度以及温度场的改变(从室温20℃逐步降低至-40℃)对橡胶力学性能的影响,对锥形橡胶弹簧在各试验温度下施加垂向载荷的刚度进行预测,并对产品进行相应的刚度试验。试验结果表明,仿真分析中若考虑温度场的改变对橡胶力学性能的影响,刚度预测精度显著提高;在环境温度低于-20℃时,仿真分析有必要考虑温度场的变化而产生的热应力对橡胶弹性元件刚度的影响。 Uniaxial tensile tests were conducted on rubber materials at the temperatures of 20, 0,-10,-20,-30 ℃ and-40 ℃. The test data were fitted with four common hyperelastic constitutive models, the constitutive model parameters at different temperatures were obtained, and the fit goodness were used to evaluate the fitting effects of the models. The results show that Ogden(N=3, N=4) models have better fitting effects. The impacts of ambient temperature and the change of the temperature field(from room temperature 20 ℃ reducing to-40 ℃ gradually) on mechanical property of rubber materials were considered, the stiffness prediction of cone-shape spring under perpendicular loads were conducted at various testing temperatures, and the corresponding stiffness tests were made on products. The test results show that the stiffness prediction accuracy has a significantly increasing if the impact of the temperature field change on mechanical property of rubber materials was considered in simulation analysis. At the the ambient temperature less than-20 ℃, it is necessary to consider the impact of thermal stress in the temperature field change on the stiffness prediction of rubber spring in simulation analysis.
出处 《湖南工业大学学报》 2016年第1期11-16,共6页 Journal of Hunan University of Technology
关键词 橡胶弹性元件 单轴拉伸试验 低温 静刚度 rubber elastic element uniaxial tensile experiment low temperature static stiffness
  • 相关文献

参考文献8

二级参考文献36

  • 1余惠琴,刘晓红,高守超,姚冬梅.天然橡胶低温改性试验[J].特种橡胶制品,2005,26(1):19-21. 被引量:12
  • 2李晓芳,杨晓翔,郭红峰,王雪飞,杨军.简单剪切橡胶件断裂的有限元分析[J].特种橡胶制品,2006,27(6):37-39. 被引量:2
  • 3GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Phil. Trans. R. Soc. A, 1920, 221: 163-198.
  • 4RIVLIN R S, THOMAS A G. Rupture of rubber I. Characteristic energy for tearing[J]. Polym. Sci., 1953, 10: 291-318.
  • 5LAKE G J, LINDLEY P B, THOMAS ACt Cut growth and fatigue of rubbers. Part h The relationship between cut growth and fatigue[J]. Rubber Chemistry and Technology, 1965, 38: 292-300.
  • 6LAKE G J, LINDLEY P B, THOMAS A G Cut growth and fatigue of rubbers. Part II: Experiments on a noncrystallizing rubber[J]. Rubber Chemistry and Technology, 1965, 38: 301-313.
  • 7LAKE G J, LINDLEY P B. The mechanical fatigue limit for rubber[J]. Journal of Applied Polymer Science, 1965, 9: 335-351.
  • 8MARS W V, FATEMI A. Fatigue crack nucleation and growth in filled natural rubber[J]. Fatigue Fract. Engng. Mater. Struct., 2003, 26: 779-789.
  • 9LINDLEY P B. Energy for crack growth in model rubber component[J]. Journal of Strain Analysis, 1972, 7: 132-140.
  • 10LUO R K. COOK P W, WU W X, et al. Fatigue design of rubber springs used in rail vehicle suspensions[J]. Proc. Instn Mech. Engrs. Part F: J. Rail and Rapid Transit, 2003, 217: 237-240.

共引文献149

同被引文献18

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部