期刊文献+

基于神经网络在线学习的输电线路多时间尺度负载能力动态预测 被引量:3

Dynamic Prediction of Multi-time Scale Load Capacity for Power Transmission Lines Based on the Online Learning of Neural Networks
下载PDF
导出
摘要 输电线路负载能力的动态预测能够为负荷调度方案和线路故障检修管理提供十分重要的参考。提出基于运行环境变化对输电线路多时间尺度负载能力进行预测的方法。利用Elman神经网络结合气温、风速、负荷的历史值实现在线学习并预测气象参数和负荷,再基于稳态和暂态热容量计算模型对输电线路不同运行时间的允许负载能力进行动态预测。对比输电线路负荷与稳态、暂态负载能力,充分挖掘了输电线路的潜在容量,为制定电网科学调度和检修策略提供有力支撑。 Dynamic prediction of the load capacity of power transmission lines provides a very important reference for the load dispatch scheme and management of line troubleshooting. This article presents a method for predicting the multi-time scale load capacity of power transmission lines based on change of operational environment. Firstly,online learning and prediction of meteorological parameters and load are realized through Elman neural network as well as historical values of air temperature,wind speed and load. Then,permissible load capacities of the line at different operational time are predicted dynamically on the basis of the steady-state and transient-state heat capacity models. The load of the power transmission line is compared with its steady-state and transient-state load capacities. This approach makes a full use of the potential capacity of the transmission line and provides a strong support for the formulation of a scientific scheduling and maintenance strategy for the power grid.
出处 《电气自动化》 2016年第2期87-90,105,共5页 Electrical Automation
基金 国家高技术研究发展计划(863计划)(2015AA050204) 国家自然科学基金(51477100) 上海市科委资助项目(13dz1201300)
关键词 多时间尺度 ELMAN神经网络 动态预测 热容量模型 负载能力 multi-time scale Elman neural network dynamic prediction model of heat capacity load capacity
  • 相关文献

参考文献14

二级参考文献150

共引文献412

同被引文献26

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部