期刊文献+

CO_2/CH_4在干酪根中竞争吸附规律的分子模拟 被引量:9

Molecular simulation of CO_2/CH_4 competitive adsorption in kerogen
下载PDF
导出
摘要 选取有机质作为研究对象,构建干酪根模型,采用巨正则系综蒙特卡罗(GCMC)方法和分子动力学方法(MD)研究不同摩尔分数、不同压力下CH_4和CO_2的气体的竞争吸附行为以及吸附引起的干酪根本体形变。结果表明:CH_4和CO_2单组分吸附时吸附量随着压力的增大而增大,CO_2吸附会在较小的压力时达到饱和,两种气体吸附符合Langmuir吸附规律,可以使用Langmuir方程进行拟合;在相同的压力和温度下,CO_2/CH_4吸附选择性会随着CO_2摩尔分数的增大而减小,CO_2更易被干酪根吸附;干酪根与CO_2有较强的相互作用,干酪根中不同的原子对吸附起着不同的作用;低压阶段吸附是引起体积应变的主要原因,高压阶段压力对体积应变发挥明显作用。 The kerogen model was built and the organic matter was selected as the research object. The CH4 and CO2 adsorp-tion behavior and the associated volumetric strain of the kerogen at different CO2 mole fractions and different pressures were investigated using Monte Carlo ( GCMC) and Molecular Dynamic methods. The results show that the adsorption amount of CH4 and CO2 increases with pressure increase. And CO2 adsorption amount can reach maximum at lower pressure. The ad-sorption of CH4 and CO2 accords with the law of Langmuir adsorption and can be fitted by Langmuir equation. The adsorption selectivity of CH4/CO2 decreases as the CO2 mole fractions increase at the same pressure and temperature, and the CO2 is easier adsorptive by kerogen. Also it is found that there is a strong interaction between kerogen and CO2 , and different atoms play different roles for adsorption in kerogen. At low pressures, the adsorption is the main reasons for volumetric strain, and at high pressures, the pressure is a significant role in volumetric strain.
作者 隋宏光 姚军
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期147-154,共8页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家自然科学基金项目(51234007 51490654 51504276) 长江学者和创新团队发展计划项目(IRT1294)
关键词 干酪根 竞争吸附 分子模拟 体积应变 kerogen competitive adsorption molecular simulation volumetric strain
  • 相关文献

参考文献35

  • 1张金川,汪宗余,聂海宽,徐波,邓飞涌,张培先,殷毅,郭华强,林拓,张琴,张德明.页岩气及其勘探研究意义[J].现代地质,2008,22(4):640-646. 被引量:211
  • 2姚军,孙海,黄朝琴,张磊,曾青冬,隋宏光,樊冬艳.页岩气藏开发中的关键力学问题[J].中国科学:物理学、力学、天文学,2013,43(12):1527-1547. 被引量:88
  • 3孙海,姚军,孙致学,樊冬艳.页岩气数值模拟技术进展及展望[J].油气地质与采收率,2012,19(1):46-49. 被引量:32
  • 4CURTIS J B. Fractured shale-gas systems[J]. AAPGbulletin, 2002,86(11):1921-1938.
  • 5AMBROSE R J, HARTMAN R C C, AKKUTLU I Y.Multi-component sorbed-phase considerations for shalegas-in-place calculations [R]. SPE 141416, 2011.
  • 6张雪芬,陆现彩,张林晔,刘庆.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010,25(6):597-604. 被引量:172
  • 7MOSHER K, HE J, LIU Y, et al. Molecular simulationof methane adsorption in micro-and mesoporous carbonswith applications to coal and gas shale systems[J]. Inter-national Journal of Coal Geology, 2013,109/110:36-44.
  • 8TENNEY C M, LASTOSKIE C M. Molecular simulationof carbon dioxide adsorption in chemically and structurallyheterogeneous porous carbons [J]. Environmental Pro-gress, 2006,25(4):343-354.
  • 9BILLEMONT P, COASNE B, de WEIRELD G. An ex-perimental and molecular simulation study of the adsorp-tion of carbon dioxide and methane in nanoporous carbonsin the presence of water[J]. Langmuir, 2011,27(3):1015-1024.
  • 10BILLEMONT P, COASNE B, de WEIRELD G. Adsorp-tion of carbon dioxide, methane, and their mixtures inporous carbons: effect of surface chemistry, water con-tent, and pore disorder[J]. Langmuir, 2013,29(10):3328-3338.

二级参考文献283

共引文献609

同被引文献166

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部