期刊文献+

基于图像处理的插秧机器人软件系统设计

Research on Transplanting Robot Software Architecture Based Image Processing
下载PDF
导出
摘要 图像处理是人工智能的一个很大的领域,农业机器人上的图像处理应用也已经越来越广泛,而以计算机为基础的控制软件更是农业机器人的大脑。介绍了一套基于图像处理技术为的插秧机器人控制软件系统,实现了自动插秧、自动判别优劣种苗和自动反馈实时信息等。针对插秧机器人对于种苗判断速度的要求,提出了基于K-means算法的种苗优劣判断机制,该算法力求对绿色敏感,可以快速得到种苗像素分布。整套软件集通信、控制及图像处理为一体,实现了农业自动化。 This paper describes a transplanting robot control software system based on a set of image processing technology,and realizied the automatic transplanting,the judgment of seedlings' quality and automatic real-time information feedback.Robot for transplanting seedlings to determine speed requirements,seedlings judge the merits of proposed mechanism is based on K-means algorithm,the algorithm seeks green-sensitive,seed pixel distribution can be quickly got.
出处 《工业控制计算机》 2016年第3期8-9,12,共3页 Industrial Control Computer
关键词 插秧机 作业速度 K-MEANS transplanting robot walking speed K-means
  • 相关文献

参考文献10

  • 1Pham V H,Lee B R.An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm [J], Vietnam Journal of Computer Science, 2015, 2(1):25-33.
  • 2Ray S, Turi R C. Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmen-tation[C]// 4th ICAPRDT Proc. 1999.
  • 3Schwarz M W,Cowan W B,Beatty J C. An experimental comparison of RGB, YtQ, LAB, HSV, and opponent color models[J]. Acm Transactions on Graphics, 1987, 6(2):123-158.
  • 4Dubey S R, Singh N, Gupta J P, et al. Infected Fruit Part Detection using K—Means Clustering Segmentation Technique [J], Ijimai, 2013, 2(2).
  • 5Yin H, Chai Y, Yang S X, et al. Ripe tomato extraction for a harvesting robotic system[C]// Proceedings of the 2009 IEEE international conference on Systems, Man and Cybernetics. IEEE Press, 2009:2984-2989.
  • 6Pastrana J C, Rath T. Novel image processing approach for solving the overlapping problem in agriculture [J],Biosystems Engineering, 2013, 115(1):106-115.
  • 7Ng H P,Ong S H, Foong K W C, et al. Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm [C]//lmage Analysis and Interpretation,2006 IEEE Southwest Symposium on. IEEE, 2006:61-65.
  • 8Ruiz-Ruiz G, G6mez-Git J, Navas-Gracia L M. Testing different color spaces based on hue for the environmentally adaptive segmentation algorithm (EASA) [J]. Computers & Electronics in Agriculture, 2009, 68(1):88-96.
  • 9Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color lmages[C]// null. IEEE Computer Society, 1998:839.
  • 10Zhang C, Zhang S, Wu J, et al. An Improved Watershed Algorithm for Color Image Segmentation[C]// Computer Science and Electronics Engineering, International Conference on. IEEE, 2012:69-72.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部