期刊文献+

翅膀对仿蝗虫机器人空中姿态影响分析 被引量:3

Analysis of wings effects on locust-like robot air posture
下载PDF
导出
摘要 为验证蝗虫通过翅膀不对称运动进行空中姿态调整机理,设计了仿蝗虫空中姿态调整机器人系统,通过曲柄摇杆机构实现翅膀拍动。分析了机构特性,建立了翅膀拍动模型,计算了不同拍动频率、不同拍动幅值下翅膀受力及力矩情况,分析了左右翅膀同步拍动与异步拍动时对机体产生的影响。最后,搭建了实验验证平台,实验结果表明,左右翅膀的同步拍动不会引起机体姿态较大变动,而两侧翅膀拍动相位的不同将引起机体来回摆动,拍动幅值的不同将引起机体的滚转运动,且拍动频率越高,机体滚转越明显。证明了蝗虫利用翅膀不同步运动进行空中姿态调整机理的正确性,也为仿蝗虫机器人空中姿态调整设计提供了依据。 To verify the mechanism that locusts adjust their posture in air by flapping wings asynchronously,the air posture adjustment locust-like robot system has been designed which realized the flapping of wings with the crank-rocker structure. The structure characteristics have been analyzed and the wings flapping model has been established. Then,the forces and torques acting on the wings under different flapping frequencies and different amplitudes have been calculated. The influences on the body with synchronous and asynchronous flapping of wings have also been analyzed. Finally,an experimental platform has been built and a series of experiments have been implemented. Results indicate that synchronous flapping of left and right wings does not induce body posture change greatly while different phases of each side of wings will cause the body swing.Furthermore,different flapping amplitudes will induce the body roll and the higher flapping frequency is,the more obvious the body rolling phenomenon is. The experiments have verified the correctness of the mechanism of locust air posture adjustment by the ways of asynchronous wings motion and have provided the basis for the design of the air posture adjustment locust-like robot.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第1期165-171,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(51375035) 高等学校博士学科点专项科研基金(20121102110021)~~
关键词 仿蝗虫机器人 空中姿态调整 仿生机构 翅膀不同步拍动 影响分析 locust-like robot air posture adjustment bionic mechanism asynchronous wings flapping analysis of effects
  • 相关文献

参考文献15

  • 1LIBBY T, MOORE T Y, CHANG-SIU E, et al. Tail-assisted pitch control in lizards, robots and dinosaurs [ J ]. Nature, 2012, 481 (7380) :181-184.
  • 2CHANG-SIU E, LIBBY T, TOMIZUKA M, et al. A lizard-in- spired active tail enables rapid maneuvers and dynamic stabili- zation in a terrestrial robot[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscat- away, NJ : IEEE Press ,2011 : 1887-1894.
  • 3ZHAO J,ZHAO T, XI N, et al. Controlling aerial maneuvering of a miniature jumping robot using its tail [ C ]//2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems ( IROS). Piscataway, NJ : IEEE Press,2013:3802-3807.
  • 4CHENG B,DENG X,HEDRICK T L. The mechanics and con- trol of pitching manoeuvres in a freely flying hawkmoth ( Manduca sexta) [ J ]. The Journal of Experimental Biology, 2011,214(24) :4092-4106.
  • 5XU N, SUN M. Lateral dynamic flight stability of a model bum- blebee in hovering and forward flight[J]. Journal of Theoretical Biology ,2013,319 : 102-115.
  • 6SU J Y,TING S C, YANG J T. How a small bird executes a sharp turning maneuver: A mechanical perspective[ J]. Experi- mental Mechanics ,2012,52 (7) :693-703.
  • 7ROBERTSON R M ,JOHNSON A G. Collision avoidance of fly- ing locusts : Steering torques and behaviour [ J ]. Journal of Ex- perimental Biology, 1993,183 ( 10 ) :35-60.
  • 8ROBERTSON R M,KUHNERT C T, DAWSON J W. Thermal avoidance during flight in the locust loeusta migratoria [ J ]. Journal of Experimental Biology, 1996,199 (6) : 1383-1393.
  • 9GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inven- ting a micro aerial vehicle inspired by the mechanics of dragon- fly flight [ M ]. Towards Autonomous Robotic Systems. Berlin, Heidelberg : Springer,2014:90-100.
  • 10WOODWARD M A,SITTI M. Design of a miniature integrated multi-modal jumping and gliding robot [ C ]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ : IEEE Press, 2011:556-561.

二级参考文献3

共引文献21

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部