期刊文献+

基于降维算法和Edgeworth级数的结构可靠性分析 被引量:4

Structural reliability analysis based on dimensionality reduction and Edgeworth series
下载PDF
导出
摘要 针对工程实际中存在功能函数为隐式或高维非线性的复杂结构,本文提出了一种基于降维算法和Edgeworth级数的可靠性分析方法。利用降维算法将n维函数展开为n个一维函数,经变量转换后变量都相互独立且服从均值为0、方差为0.5的正态分布,再结合Gauss-Hermite积分方法计算出一维函数的原点矩,从而得到结构功能函数的中心矩,将所得的矩信息应用到Edgeworth级数展开式中,给出功能函数的累积分布函数表达式,计算得到结构的失效概率。该方法避免了功能函数对变量梯度的要求,仅需少量的确定性重分析计算。数值算例结果表明了本方法的有效性和正确性。 A reliability analysis method based on the dimension reduction algorithm and the Edgeworth series was proposed to treat the complicate structures with implicit and high dimensional nonlinear limit state functions in practical engineering. By utilizing the dimension reduction method,the n-dimensional function was expanded to n unidimensional functions and the random variable were made to subject to the independent normal distribution with mean value being zero and variance deviation being 0. 5 by means of the variable transformation. The origin moments of the unidimensional functions were obtained after the Gauss-Hermite integration. In this case,the central moments of the limit state function of the structure were achieved successfully and applied to the Edgeworth series expanding expressions,from which the cumulative distribution function of the limit state function could be generated and finally the probability of failure could be obtained. Avoiding gradient computation,the proposed method requires less definite reanalysis and is proved to be effective and correct via numerical examples.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第3期421-425,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 吉林省科技厅基金(201205001 201215048) 国家重大科学仪器设备开发专项(2012YQ030075)~~
关键词 结构可靠性 降维算法 Gauss-Hermite数值积分 Edgeworth级数 矩方法 structural reliability dimension reduction method Gauss-Hermite numerical integration Edgeworth series moment method
  • 相关文献

参考文献15

  • 1马小兵,任宏道,蔡义坤.高温结构可靠性分析的时变响应面法[J].北京航空航天大学学报,2015,41(2):198-202. 被引量:4
  • 2许孟辉,邱志平.结构模糊非概率混合可靠性分析方法[J].北京航空航天大学学报,2014,40(2):222-228. 被引量:4
  • 3MOJSILOVIC N ,STEWART M G. Probability and structural re- liability assessment of mortar joint thickness in load-bearing masonry walls [ J ]. Structural Safety, 2015,52 : 209-218.
  • 4HUANG X Y,ALIABADI M H. A boundary element method for structural reliability [ J ]. Key Engineering Materials ,2015,627 : 453-456.
  • 5LOW B K,PHOON K K. Reliability-based design and its com- plementary role to Eurocode 7 design approach [ J ]. Computers and Geoteehnics ,2015,65:30-44.
  • 6CHOI M J, CHO H, CHOI K K,et al. Sampling-based RBDO of ship hull structures considering thermo-elasto-plastie residual deformation[ J~]. Mechanics Based Design of Structures and Ma- chines ,2015,43 ( 2 ) : 183-208.
  • 7SHI X,TEIXEIRA A P, ZHANG J, et al. Structural reliability analysis based on probabilistic response modelling using the maximum entropy method [ J ]. Engineering Structures, 2014, 70:106-116.
  • 8RAHMAN S, XU H. A univariate dimension-reduction method for multi-dimenslonal integration in stochastic mechanics [ J ]. Probabilistic Engineering Mechanics,2004,19 (4) : 393-408.
  • 9CHO H,BAE S,CHOI K K,et al. An efficient variable screen- ing method for effective surrogate models for reliability-based design optimization [ J ]. Structural and Multidisciplinary Opti- mization ,2014:50( 5 ) :717-738.
  • 10YOUN B D, XI Z, WANG P. Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis [ J ]. Structural and Multidisciplinary Optimization, 2008,37 ( 1 ) : 13- 28.

二级参考文献48

  • 1Huang Hongzhong (School of Mechanical Engineering, Dalian University of Technology).CALCULATION OF FUZZY RELIABILITY IN THE CASE OF RANDOM STRESS AND FUZZY FATIGUE STRENGTH[J].Chinese Journal of Mechanical Engineering,2000,13(3):197-200. 被引量:13
  • 2亢战,程耿东.基于随机有限元的非线性结构稳健性优化设计[J].计算力学学报,2006,23(2):129-135. 被引量:11
  • 3吕震宙,杨子政,赵洁.基于加权线性响应面法的神经网络可靠性分析方法[J].航空学报,2006,27(6):1063-1067. 被引量:13
  • 4Cheng Gengdong, Xu Lin, Jiang Lei. A sequential approximate programming strategy for reliability-based structural optimization [ J]. Computers Structures,2006,84(21 ) : 1353 -1367.
  • 5Ben-Haim Y,Elishakoff I. Convex of uncertainty in applied me- chanics [ M ]. Amsterdam : Elsevier Science, 1990.
  • 6Dong Yuge, Wang Ainan. A fuzzy reliability analysis based on the transformation between discrete fuzzy variables and discrete ran- dom variables [ J ]. International Journal of Reliability, Quality and Safety Engineering,2006,13( 1 ) : 25 -35.
  • 7Cai K Y,Wei C Y,Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context [ J ]. Fuzzy Sets and Systems,1991,42(2) : 145 - 172.
  • 8Cai K Y,Wei C Y,Zhang M L. Fuzzy states as a basis for a theo- ry of fuzzy reliability [ J]. Microelectronics and Reliability, 1993,33(15) : 2253 -2263.
  • 9Qiu Zhiping, Wang Jun. The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system [ J ]. Engineering Failure Analysis,2010,17 ( 5 ) : 1142 - 1154.
  • 10Luo Yangjun, Kang Zhan, Li Alex. Structural reliability assess- ment based on probability and convex set mixed model [ J]. Computers and Structures,2009,87(21/22) : 1408 -1415.

共引文献16

同被引文献24

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部